A multiscale cavity method for sublinear-rank symmetric matrix factorization

J Barbier, J Ko, AA Rahman - arXiv preprint arXiv:2403.07189, 2024 - arxiv.org
arXiv preprint arXiv:2403.07189, 2024arxiv.org
We consider a statistical model for symmetric matrix factorization with additive Gaussian
noise in the high-dimensional regime where the rank $ M $ of the signal matrix to infer
scales with its size $ N $ as $ M= o (N^{1/10}) $. Allowing for a $ N $-dependent rank offers
new challenges and requires new methods. Working in the Bayesian-optimal setting, we
show that whenever the signal has iid entries the limiting mutual information between signal
and data is given by a variational formula involving a rank-one replica symmetric potential …
We consider a statistical model for symmetric matrix factorization with additive Gaussian noise in the high-dimensional regime where the rank of the signal matrix to infer scales with its size as . Allowing for a -dependent rank offers new challenges and requires new methods. Working in the Bayesian-optimal setting, we show that whenever the signal has i.i.d. entries the limiting mutual information between signal and data is given by a variational formula involving a rank-one replica symmetric potential. In other words, from the information-theoretic perspective, the case of a (slowly) growing rank is the same as when (namely, the standard spiked Wigner model). The proof is primarily based on a novel multiscale cavity method allowing for growing rank along with some information-theoretic identities on worst noise for the Gaussian vector channel. We believe that the cavity method developed here will play a role in the analysis of a broader class of inference and spin models where the degrees of freedom are large arrays instead of vectors.
arxiv.org
以上显示的是最相近的搜索结果。 查看全部搜索结果