A three-dimensional microfluidic approach to scaling up microencapsulation of cells
S Tendulkar, SH Mirmalek-Sani, C Childers… - Biomedical …, 2012 - Springer
Biomedical microdevices, 2012•Springer
Current applications of the microencapsulation technique include the use of encapsulated
islet cells to treat Type 1 diabetes, and encapsulated hepatocytes for providing temporary
but adequate metabolic support to allow spontaneous liver regeneration, or as a bridge to
liver transplantation for patients with chronic liver disease. Also, microcapsules can be used
for controlled delivery of therapeutic drugs. The two most widely used devices for
microencapsulation are the air-syringe pump droplet generator and the electrostatic bead …
islet cells to treat Type 1 diabetes, and encapsulated hepatocytes for providing temporary
but adequate metabolic support to allow spontaneous liver regeneration, or as a bridge to
liver transplantation for patients with chronic liver disease. Also, microcapsules can be used
for controlled delivery of therapeutic drugs. The two most widely used devices for
microencapsulation are the air-syringe pump droplet generator and the electrostatic bead …
Abstract
Current applications of the microencapsulation technique include the use of encapsulated islet cells to treat Type 1 diabetes, and encapsulated hepatocytes for providing temporary but adequate metabolic support to allow spontaneous liver regeneration, or as a bridge to liver transplantation for patients with chronic liver disease. Also, microcapsules can be used for controlled delivery of therapeutic drugs. The two most widely used devices for microencapsulation are the air-syringe pump droplet generator and the electrostatic bead generator, each of which is fitted with a single needle through which droplets of cells suspended in alginate solution are produced and cross-linked into microbeads. A major drawback in the design of these instruments is that they are incapable of producing sufficient numbers of microcapsules in a short-time period to permit mass production of encapsulated and viable cells for transplantation in large animals and humans. We present in this paper a microfluidic approach to scaling up cell and protein encapsulations. The microfluidic chip consists of a 3D air supply and multi-nozzle outlet for microcapsule generation. It has one alginate inlet and one compressed air intlet. The outlet has 8 nozzles, each having 380 micrometers inner diameter, which produce hydrogel microspheres ranging from 500 to 700 μm in diameter. These nozzles are concentrically surrounded by air nozzles with 2 mm inner diameter. There are two tubes connected at the top to allow the air to escape as the alginate solution fills up the chamber. A variable flow pump 115 V is used to pump alginate solution and Tygon® tubing is used to connect in-house air supply to the air channel and peristaltic/syringe pump to the alginate chamber. A pressure regulator is used to control the flow rate of air. We have encapsulated islets and proteins with this high throughput device, which is expected to improve product quality control in microencapsulation of cells, and hence the outcome of their transplantation.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果