Ab initio study of the (0001) surfaces of hematite and chromia: Influence of strong electronic correlations

A Rohrbach, J Hafner, G Kresse - Physical Review B—Condensed Matter and …, 2004 - APS
A Rohrbach, J Hafner, G Kresse
Physical Review B—Condensed Matter and Materials Physics, 2004APS
We present a detailed ab initio investigation of the stability, the structural, electronic, and
magnetic properties of the (0001) surfaces of hematite (Fe 2 O 3) and chromia or eskolaite
(Cr 2 O 3). Strong electron correlation effects not included in a density-functional description
are described by a Hubbard-type on-site Coulomb repulsion (the DFT+ U approach). For
bulk chromia we find, complementing our recent work on hematite [Rollmann, Phys. Rev. B
69, 165107 (2004)] that the inclusion of correlation effects leads to an improved description …
We present a detailed ab initio investigation of the stability, the structural, electronic, and magnetic properties of the (0001) surfaces of hematite and chromia or eskolaite . Strong electron correlation effects not included in a density-functional description are described by a Hubbard-type on-site Coulomb repulsion (the approach). For bulk chromia we find, complementing our recent work on hematite [Rollmann , Phys. Rev. B 69, 165107 (2004)] that the inclusion of correlation effects leads to an improved description of the structural, electronic, and magnetic properties. In particular, the increased exchange splitting of the band changes the character of the insulating gap from a pure Mott-Hubbard type to intermediate between and charge-transfer insulator. For both oxides, the strong correlation effects have a dramatic influence on the surface stability: oxygen-terminated surfaces are strongly disfavored because of the increased energetic cost of stabilizing a higher oxidation state of the transition metal close to the surface. The stability of metal-terminated surfaces even under oxidizing conditions agrees with the most recent STM and LEED data. For where detailed experimental information on the surface structure is available, quantitative agreement of the calculated surface relaxations is achieved. Detailed results on the surface electronic structure (valence-band spectra and core-level shifts) and the surface magnetic properties are presented.
American Physical Society
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
查找
获取 PDF 文件
引用
References