Activating Sphingosine-1-phospahte signaling in endothelial cells increases myosin light chain phosphorylation to decrease endothelial permeability thereby …

YC Chen, SS Dinavahi, Q Feng, R Gowda, S Ramisetti… - Cancer letters, 2021 - Elsevier
YC Chen, SS Dinavahi, Q Feng, R Gowda, S Ramisetti, X Xia, KB LaPenna, VR Chirasani
Cancer letters, 2021Elsevier
Targeting the metastatic process to prevent disease dissemination in cancer remains
challenging. One step in the metastatic cascade involves cancer cells transiting through the
vascular endothelium after inflammation has increased the permeability of this cellular layer.
Reducing inflammation-mediated gaps in the vascular endothelium could potentially be
used to retard metastasis. This study describes the development of a novel ASR396-
containing nanoparticle designed to activate the Sphingosine-1-Phosphate Receptor 1 …
Abstract
Targeting the metastatic process to prevent disease dissemination in cancer remains challenging. One step in the metastatic cascade involves cancer cells transiting through the vascular endothelium after inflammation has increased the permeability of this cellular layer. Reducing inflammation-mediated gaps in the vascular endothelium could potentially be used to retard metastasis. This study describes the development of a novel ASR396-containing nanoparticle designed to activate the Sphingosine-1-Phosphate Receptor 1 (S1PR1) in order to tighten the junctions between the endothelial cells lining the vascular endothelium thereby inhibiting metastasis. ASR396 was derived from the S1PR1 agonist SEW2871 through chemical modification enabling the new compound to be loaded into a nanoliposome. ASR396 retained S1PR1 binding activity and the nanoliposomal formulation (nanoASR396) made it systemically bioavailable upon intravenous injection. Studies conducted in microvessels demonstrated that nanoASR396 significantly attenuated inflammatory mediator-induced permeability increase through the S1PR1 activation. Similarly, nanoASR396 inhibited gap formation mediated by inflammatory agents on an endothelial cell monolayer by decreasing levels of phosphorylated myosin light chain protein thereby inhibiting cellular contractility. In animal models, nanoASR396 inhibited lung metastasis by up to 80%, indicating its potential for retarding melanoma metastasis. Thus, a novel bioavailable nanoparticle-based S1PR1 agonist has been developed to negate the effects of inflammatory mediators on the vascular endothelium in order to reduce the metastatic dissemination of cancer cells.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
查找
获取 PDF 文件
引用
References