Boosting the power of schizophrenia genetics by leveraging new statistical tools
OA Andreassen, WK Thompson… - Schizophrenia …, 2014 - academic.oup.com
Schizophrenia bulletin, 2014•academic.oup.com
Genome-wide association studies (GWAS) have identified a large number of gene variants
associated with schizophrenia, but these variants explain only a small portion of the
heritability. It is becoming increasingly clear that schizophrenia is influenced by many genes,
most of which have effects too small to be identified using traditional GWAS statistical
methods. By applying recently developed Empirical Bayes statistical approaches, we have
demonstrated that functional genic elements show differential contribution to phenotypic …
associated with schizophrenia, but these variants explain only a small portion of the
heritability. It is becoming increasingly clear that schizophrenia is influenced by many genes,
most of which have effects too small to be identified using traditional GWAS statistical
methods. By applying recently developed Empirical Bayes statistical approaches, we have
demonstrated that functional genic elements show differential contribution to phenotypic …
Abstract
Genome-wide association studies (GWAS) have identified a large number of gene variants associated with schizophrenia, but these variants explain only a small portion of the heritability. It is becoming increasingly clear that schizophrenia is influenced by many genes, most of which have effects too small to be identified using traditional GWAS statistical methods. By applying recently developed Empirical Bayes statistical approaches, we have demonstrated that functional genic elements show differential contribution to phenotypic variance, with some elements (regulatory regions and exons) showing strong enrichment for association with schizophrenia. Applying related methods, we also showed abundant genetic overlap (pleiotropy) between schizophrenia and other phenotypes, including bipolar disorder, cardiovascular disease risk factors, and multiple sclerosis. We estimated the number of gene variants with effects in schizophrenia and bipolar disorder to be approximately 1.2%. By applying our novel statistical framework, we dramatically improved gene discovery and detected a large number of new gene loci associated with schizophrenia that have not yet been identified with standard GWAS methods. Utilizing independent schizophrenia substudies, we showed that these new loci have high replication rates in de novo samples, indicating that they likely represent true schizophrenia risk genes. The new statistical tools provide a powerful approach for uncovering more of the missing heritability of schizophrenia and other complex disorders. In conclusion, the highly polygenic architecture of schizophrenia strongly suggests the utility of research approaches that recognize schizophrenia neuropathology as a complex dynamic system, with many small gene effects integrated in functional networks.
Oxford University Press
以上显示的是最相近的搜索结果。 查看全部搜索结果