Characterizing transcriptional interference between converging genes in bacteria

SA Hoffmann, N Hao, KE Shearwin… - ACS synthetic …, 2019 - ACS Publications
ACS synthetic biology, 2019ACS Publications
Antisense transcription is common in naturally occurring genomes and is increasingly being
used in synthetic genetic circuitry as a tool for gene expression control. Mutual influence on
the expression of convergent genes can be mediated by antisense RNA effects and by
transcriptional interference (TI). We aimed to quantitatively characterize long-range TI
between convergent genes with untranslated intergenic spacers of increasing length. After
controlling for antisense RNA-mediated effects, which contributed about half of the observed …
Antisense transcription is common in naturally occurring genomes and is increasingly being used in synthetic genetic circuitry as a tool for gene expression control. Mutual influence on the expression of convergent genes can be mediated by antisense RNA effects and by transcriptional interference (TI). We aimed to quantitatively characterize long-range TI between convergent genes with untranslated intergenic spacers of increasing length. After controlling for antisense RNA-mediated effects, which contributed about half of the observed total expression inhibition, the TI effect was modeled. To achieve model convergence, RNA polymerase processivity and collision resistance were assumed to be modulated by ribosome trailing. The spontaneous transcription termination rate in regions of untranslated DNA was experimentally determined. Our modeling suggests that an elongating RNA polymerase with a trailing ribosome is about 13 times more likely to resume transcription than an opposing RNA polymerase without a trailing ribosome, upon head-on collision of the two.
ACS Publications
以上显示的是最相近的搜索结果。 查看全部搜索结果