Classes of nonminimally coupled scalar fields in spatially curved FRW spacetimes
Physical Review D, 2019•APS
In this work we perform a dynamical analysis of a broad class of nonminimally coupled real
scalar fields in the Friedmann-Robertson-Walker (FRW) spacetime framework. The first part
of our study concerns the dynamics of an unspecified positive potential in a spatially curved
FRW spacetime, for which we define a new set of dimensionless variables and a new
evolution parameter. In the framework of this general setup, we have recognized several
general features of the system, like symmetries, invariant subsets and critical points, and …
scalar fields in the Friedmann-Robertson-Walker (FRW) spacetime framework. The first part
of our study concerns the dynamics of an unspecified positive potential in a spatially curved
FRW spacetime, for which we define a new set of dimensionless variables and a new
evolution parameter. In the framework of this general setup, we have recognized several
general features of the system, like symmetries, invariant subsets and critical points, and …
In this work we perform a dynamical analysis of a broad class of nonminimally coupled real scalar fields in the Friedmann-Robertson-Walker (FRW) spacetime framework. The first part of our study concerns the dynamics of an unspecified positive potential in a spatially curved FRW spacetime, for which we define a new set of dimensionless variables and a new evolution parameter. In the framework of this general setup, we have recognized several general features of the system, like symmetries, invariant subsets and critical points, and provide their cosmological interpretation. The second part of our work focuses on flat FRW cases for which the tracker parameter is constant; i.e., we examine specific classes of potentials. After analyzing these cases dynamically, we discuss their physical interpretation.
American Physical Society
以上显示的是最相近的搜索结果。 查看全部搜索结果