Counterfactual zero-shot and open-set visual recognition
Proceedings of the IEEE/CVF conference on computer vision and …, 2021•openaccess.thecvf.com
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-
Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by
only training on the seen-classes. Our idea stems from the observation that the generated
samples for unseen-classes are often out of the true distribution, which causes severe
recognition rate imbalance between the seen-class (high) and unseen-class (low). We show
that the key reason is that the generation is not Counterfactual Faithful, and thus we propose …
Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by
only training on the seen-classes. Our idea stems from the observation that the generated
samples for unseen-classes are often out of the true distribution, which causes severe
recognition rate imbalance between the seen-class (high) and unseen-class (low). We show
that the key reason is that the generation is not Counterfactual Faithful, and thus we propose …
Abstract
We present a novel counterfactual framework for both Zero-Shot Learning (ZSL) and Open-Set Recognition (OSR), whose common challenge is generalizing to the unseen-classes by only training on the seen-classes. Our idea stems from the observation that the generated samples for unseen-classes are often out of the true distribution, which causes severe recognition rate imbalance between the seen-class (high) and unseen-class (low). We show that the key reason is that the generation is not Counterfactual Faithful, and thus we propose a faithful one, whose generation is from the sample-specific counterfactual question: What would the sample look like, if we set its class attribute to a certain class, while keeping its sample attribute unchanged? Thanks to the faithfulness, we can apply the Consistency Rule to perform unseen/seen binary classification, by asking: Would its counterfactual still look like itself? If" yes", the sample is from a certain class, and" no" otherwise. Through extensive experiments on ZSL and OSR, we demonstrate that our framework effectively mitigates the seen/unseen imbalance and hence significantly improves the overall performance. Note that this framework is orthogonal to existing methods, thus, it can serve as a new baseline to evaluate how ZSL/OSR models generalize. Codes are available at https://github. com/yue-zhongqi/gcm-cf.
openaccess.thecvf.com
以上显示的是最相近的搜索结果。 查看全部搜索结果