Coupled fluid-structure transient thermal analysis of a gas turbine internal air system with multiple cavities

V Ganine, U Javiya, N Hills, J Chew - 2012 - asmedigitalcollection.asme.org
V Ganine, U Javiya, N Hills, J Chew
2012asmedigitalcollection.asme.org
This paper presents the transient aerothermal analysis of a gas turbine internal air system
through an engine flight cycle featuring multiple fluid cavities that surround a HP turbine disk
and the adjacent structures. Strongly coupled fluid-structure thermal interaction problems
require significant computational effort to resolve nonlinearities on the interface for each time
step. Simulation times may grow impractical if multiple fluid domains are included in the
analysis. A new strategy is employed to decrease the cost of coupled aerothermal analysis …
This paper presents the transient aerothermal analysis of a gas turbine internal air system through an engine flight cycle featuring multiple fluid cavities that surround a HP turbine disk and the adjacent structures. Strongly coupled fluid-structure thermal interaction problems require significant computational effort to resolve nonlinearities on the interface for each time step. Simulation times may grow impractical if multiple fluid domains are included in the analysis. A new strategy is employed to decrease the cost of coupled aerothermal analysis. Significantly lower fluid domain solver invocation counts are demonstrated as opposed to the traditional coupling approach formulated on the estimates of heat transfer coefficient. Numerical results are presented using 2D finite element conduction model combined with 2D flow calculation in five separate cavities interconnected through the inlet and outlet boundaries. The coupled solutions are discussed and validated against a nominal stand-alone model. Relative performance of both coupling techniques is evaluated.
The American Society of Mechanical Engineers
以上显示的是最相近的搜索结果。 查看全部搜索结果