Drought increases the frequencies of fungal functional genes related to carbon and nitrogen acquisition
PloS one, 2018•journals.plos.org
Although water is a critical resource for organisms, microbially-mediated processes such as
decomposition and nitrogen (N) transformations can endure within ecosystems even when
water is scarce. To identify underlying mechanisms, we examined the genetic potential for
fungi to contribute to specific aspects of carbon (C) and N cycling in a drought manipulation
in Southern California grassland. In particular, we measured the frequency of fungal
functional genes encoding enzymes that break down cellulose and chitin, and take up …
decomposition and nitrogen (N) transformations can endure within ecosystems even when
water is scarce. To identify underlying mechanisms, we examined the genetic potential for
fungi to contribute to specific aspects of carbon (C) and N cycling in a drought manipulation
in Southern California grassland. In particular, we measured the frequency of fungal
functional genes encoding enzymes that break down cellulose and chitin, and take up …
Although water is a critical resource for organisms, microbially-mediated processes such as decomposition and nitrogen (N) transformations can endure within ecosystems even when water is scarce. To identify underlying mechanisms, we examined the genetic potential for fungi to contribute to specific aspects of carbon (C) and N cycling in a drought manipulation in Southern California grassland. In particular, we measured the frequency of fungal functional genes encoding enzymes that break down cellulose and chitin, and take up ammonium and amino acids, in decomposing litter. Furthermore, we used “microbial cages” to reciprocally transplant litter and microbes between control and drought plots. This approach allowed us to distinguish direct effects of drought in the plot environment versus indirect effects via shifts in the microbial community or changes in litter chemistry. For every fungal functional gene we examined, the frequency of that gene within the microbial community increased significantly in drought plots compared to control plots. In contrast, when plot environment was held constant, frequencies of these fungal functional genes did not differ significantly between control-derived microbes versus drought-derived microbes, or between control-derived litter versus drought-derived litter. It appears that drought directly selects for fungi with the genetic capacity to acquire these specific C- and N-containing compounds. This genetic trait may allow fungi to take advantage of ephemeral water supplies. Altogether, proliferation of fungi with the genetic capacity for C and N acquisition may contribute to the maintenance of biogeochemical cycling under drought.
PLOS
以上显示的是最相近的搜索结果。 查看全部搜索结果