Effective EMG denoising using a hybrid model based on WAT and GARCH
RK Joseph, G Titus, MS Sudhakar - Biomedical Signal Processing and …, 2018 - Elsevier
RK Joseph, G Titus, MS Sudhakar
Biomedical Signal Processing and Control, 2018•ElsevierEMG is the recording of electrical activity of the muscles that can be used in diagnosing
muscular diseases like myopathy and neuropathy and in generating control signals for
operating artificial prosthetic arms and limbs. Various forms of artifacts get introduced into
the EMG during the acquisition process that limits its proper analysis and characterization.
This paper proposes a novel noise suppression method for EMG signals employing
orthogonal Wave Atom Transform (WAT) followed by statistical modelling of wavelet …
muscular diseases like myopathy and neuropathy and in generating control signals for
operating artificial prosthetic arms and limbs. Various forms of artifacts get introduced into
the EMG during the acquisition process that limits its proper analysis and characterization.
This paper proposes a novel noise suppression method for EMG signals employing
orthogonal Wave Atom Transform (WAT) followed by statistical modelling of wavelet …
Abstract
EMG is the recording of electrical activity of the muscles that can be used in diagnosing muscular diseases like myopathy and neuropathy and in generating control signals for operating artificial prosthetic arms and limbs. Various forms of artifacts get introduced into the EMG during the acquisition process that limits its proper analysis and characterization. This paper proposes a novel noise suppression method for EMG signals employing orthogonal Wave Atom Transform (WAT) followed by statistical modelling of wavelet coefficients by using a Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model with maximum a-posteriori (MAP) estimator for signal recovery from noisy EMG signals. The proposed algorithm was evaluated on signals taken from the standard Physionet ATM database that was manually corrupted by different levels of Additive White Gaussian Noise (AWGN) noise. The efficiency of the proposed algorithm is studied using the standard metrics namely, Signal to Noise Ratio (SNR) in dB, and Percent Root Mean Square Deviation (PRD). Results indicate that the hybrid denoising scheme was able to reduce noise from EMG signals more effectively quantified by average SNR of 22.98 dB and PRD of 0.00029, across different datasets, in comparison with the currently employed noise reduction algorithms.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果