[HTML][HTML] Experimental validation of FEM-computed stress to tip deflection ratios of aero-engine compressor blade vibration modes and quantification of associated …

ME Mohamed, P Bonello, P Russhard… - … Systems and Signal …, 2022 - Elsevier
ME Mohamed, P Bonello, P Russhard, P Procházka, ML Mekhalfia, EBT Tchuisseu
Mechanical Systems and Signal Processing, 2022Elsevier
Abstract Blade Tip Timing (BTT) technology is concerned with the estimation of
turbomachinery blade stresses. The stresses are determined from BTT data by relating the
measured tip deflection to the stresses via Finite Element (FE) models. The correlation of
BTT measurements with FE predictions involves a number of uncertainties. This paper
presents the process for validating the FE stress and deflection predictions of aero-engine
compressor blades under non-rotation conditions as a critical preliminary step towards the …
Abstract
Blade Tip Timing (BTT) technology is concerned with the estimation of turbomachinery blade stresses. The stresses are determined from BTT data by relating the measured tip deflection to the stresses via Finite Element (FE) models. The correlation of BTT measurements with FE predictions involves a number of uncertainties. This paper presents the process for validating the FE stress and deflection predictions of aero-engine compressor blades under non-rotation conditions as a critical preliminary step towards the complete understanding of their dynamic behaviour under rotating conditions when using BTT measurements. The process steps are described in detail, including the FE modelling and analysis of the blades and the blade-disk assembly, and the measurements of the blade tip deflection and blade stress. Furthermore, the uncertainties associated with the FE modelling and the measurement processes are quantified. The results show that the FE model is valid considering the control of most uncertainties. The experimental validation of the FE-computed stress-to-tip deflection calibration factors in the present study provides the basis for the determination of the calibration factors under rotational conditions using a previously presented BTT data simulator, and for the design of corresponding rotating experiments using BTT.
Elsevier
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
查找
获取 PDF 文件
引用
References