Gene expression meta-analysis supports existence of molecular apocrine breast cancer with a role for androgen receptor and implies interactions with ErbB family
BMC medical genomics, 2009•Springer
Background Pathway discovery from gene expression data can provide important insight
into the relationship between signaling networks and cancer biology. Oncogenic signaling
pathways are commonly inferred by comparison with signatures derived from cell lines. We
use the Molecular Apocrine subtype of breast cancer to demonstrate our ability to infer
pathways directly from patients' gene expression data with pattern analysis algorithms.
Methods We combine data from two studies that propose the existence of the Molecular …
into the relationship between signaling networks and cancer biology. Oncogenic signaling
pathways are commonly inferred by comparison with signatures derived from cell lines. We
use the Molecular Apocrine subtype of breast cancer to demonstrate our ability to infer
pathways directly from patients' gene expression data with pattern analysis algorithms.
Methods We combine data from two studies that propose the existence of the Molecular …
Background
Pathway discovery from gene expression data can provide important insight into the relationship between signaling networks and cancer biology. Oncogenic signaling pathways are commonly inferred by comparison with signatures derived from cell lines. We use the Molecular Apocrine subtype of breast cancer to demonstrate our ability to infer pathways directly from patients' gene expression data with pattern analysis algorithms.
Methods
We combine data from two studies that propose the existence of the Molecular Apocrine phenotype. We use quantile normalization and XPN to minimize institutional bias in the data. We use hierarchical clustering, principal components analysis, and comparison of gene signatures derived from Significance Analysis of Microarrays to establish the existence of the Molecular Apocrine subtype and the equivalence of its molecular phenotype across both institutions. Statistical significance was computed using the Fasano & Franceschini test for separation of principal components and the hypergeometric probability formula for significance of overlap in gene signatures. We perform pathway analysis using LeFEminer and Backward Chaining Rule Induction to identify a signaling network that differentiates the subset. We identify a larger cohort of samples in the public domain, and use Gene Shaving and Robust Bayesian Network Analysis to detect pathways that interact with the defining signal.
Results
We demonstrate that the two separately introduced ER- breast cancer subsets represent the same tumor type, called Molecular Apocrine breast cancer. LeFEminer and Backward Chaining Rule Induction support a role for AR signaling as a pathway that differentiates this subset from others. Gene Shaving and Robust Bayesian Network Analysis detect interactions between the AR pathway, EGFR trafficking signals, and ErbB2.
Conclusion
We propose criteria for meta-analysis that are able to demonstrate statistical significance in establishing molecular equivalence of subsets across institutions. Data mining strategies used here provide an alternative method to comparison with cell lines for discovering seminal pathways and interactions between signaling networks. Analysis of Molecular Apocrine breast cancer implies that therapies targeting AR might be hampered if interactions with ErbB family members are not addressed.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果