How the surface nanostructure of polyethylene affects protein assembly and orientation

TF Keller, J Schönfelder, J Reichert, N Tuccitto… - ACS …, 2011 - ACS Publications
TF Keller, J Schönfelder, J Reichert, N Tuccitto, A Licciardello, GML Messina, G Marletta
ACS nano, 2011ACS Publications
Protein adsorption plays a key role in the biological response to implants. We report how
nanoscale topography, chemistry, crystallinity, and molecular chain anisotropy of ultrahigh
molecular weight polyethylene (UHMWPE) surfaces affect the protein assembly and induce
lateral orientational order. We applied ultraflat, melt drawn UHMWPE films to show that
highly oriented nanocrystalline lamellae influence the conformation and aggregation into
network structures of human plasma fibrinogen by atomic force microscopy with …
Protein adsorption plays a key role in the biological response to implants. We report how nanoscale topography, chemistry, crystallinity, and molecular chain anisotropy of ultrahigh molecular weight polyethylene (UHMWPE) surfaces affect the protein assembly and induce lateral orientational order. We applied ultraflat, melt drawn UHMWPE films to show that highly oriented nanocrystalline lamellae influence the conformation and aggregation into network structures of human plasma fibrinogen by atomic force microscopy with unprecedented clarity and molecular resolution. We observed a transition from random protein orientation at low concentrations to an assembly guided by the UHMWPE surface nanotopography at a close to full surface coverage on hydrophobic melt drawn UHMWPE. This assembly differs from the arrangement at a hydrophobic, on the nanoscale smooth UHMWPE reference. On plasma-modified, hydrophilic melt drawn UHMWPE surfaces that retained their original nanotopography, the influence of the nanoscale surface pattern on the protein adsorption is lost. A model based on protein−surface and protein−protein interactions is proposed. We suggest these nanostructured polymer films to be versatile model surfaces to provide unique information on protein interactions with nanoscale building blocks of implants, such as nanocrystalline UHMWPE lamellae. The current study contributes to the understanding of molecular processes at polymer biointerfaces and may support their future design and molecular scale tailoring.
ACS Publications
以上显示的是最相近的搜索结果。 查看全部搜索结果