Imaging atelectrauma in ventilator-induced lung injury using 4D X-ray microscopy
Scientific Reports, 2021•nature.com
Mechanical ventilation can damage the lungs, a condition called Ventilator-Induced Lung
Injury (VILI). However, the mechanisms leading to VILI at the microscopic scale remain
poorly understood. Here we investigated the within-tidal dynamics of cyclic recruitment/
derecruitment (R/D) using synchrotron radiation phase-contrast imaging (PCI), and the
relation between R/D and cell infiltration, in a model of Acute Respiratory Distress Syndrome
in 6 anaesthetized and mechanically ventilated New-Zealand White rabbits. Dynamic PCI …
Injury (VILI). However, the mechanisms leading to VILI at the microscopic scale remain
poorly understood. Here we investigated the within-tidal dynamics of cyclic recruitment/
derecruitment (R/D) using synchrotron radiation phase-contrast imaging (PCI), and the
relation between R/D and cell infiltration, in a model of Acute Respiratory Distress Syndrome
in 6 anaesthetized and mechanically ventilated New-Zealand White rabbits. Dynamic PCI …
Abstract
Mechanical ventilation can damage the lungs, a condition called Ventilator-Induced Lung Injury (VILI). However, the mechanisms leading to VILI at the microscopic scale remain poorly understood. Here we investigated the within-tidal dynamics of cyclic recruitment/derecruitment (R/D) using synchrotron radiation phase-contrast imaging (PCI), and the relation between R/D and cell infiltration, in a model of Acute Respiratory Distress Syndrome in 6 anaesthetized and mechanically ventilated New-Zealand White rabbits. Dynamic PCI was performed at 22.6 µm voxel size, under protective mechanical ventilation [tidal volume: 6 ml/kg; positive end-expiratory pressure (PEEP): 5 cmH2O]. Videos and quantitative maps of within-tidal R/D showed that injury propagated outwards from non-aerated regions towards adjacent regions where cyclic R/D was present. R/D of peripheral airspaces was both pressure and time-dependent, occurring throughout the respiratory cycle with significant scatter of opening/closing pressures. There was a significant association between R/D and regional lung cellular infiltration (p = 0.04) suggesting that tidal R/D of the lung parenchyma may contribute to regional lung inflammation or capillary-alveolar barrier dysfunction and to the progression of lung injury. PEEP may not fully mitigate this phenomenon even at high levels. Ventilation strategies utilizing the time-dependence of R/D may be helpful in reducing R/D and associated injury.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果