[PDF][PDF] Imputation of erosivity values under incomplete rainfall data by machine learning methods
K Vantas, E Sidiropoulos - European Water, 2017 - academia.edu
K Vantas, E Sidiropoulos
European Water, 2017•academia.eduIn this article, a comparison is presented of empirical equations to machine learning
methods for the estimation and imputation of rainfall erosivity values, associated with
significant amounts of rainfall measurements that are missing in the available recording rain
gauge data of the Greek Hydroscope database. The empirical equations are mainly based
on exponential relations between erosivity and rainfall, while the machine learning methods
employed in this paper are feed-forward neural networks with Bayesian regularization and …
methods for the estimation and imputation of rainfall erosivity values, associated with
significant amounts of rainfall measurements that are missing in the available recording rain
gauge data of the Greek Hydroscope database. The empirical equations are mainly based
on exponential relations between erosivity and rainfall, while the machine learning methods
employed in this paper are feed-forward neural networks with Bayesian regularization and …
Abstract
In this article, a comparison is presented of empirical equations to machine learning methods for the estimation and imputation of rainfall erosivity values, associated with significant amounts of rainfall measurements that are missing in the available recording rain gauge data of the Greek Hydroscope database. The empirical equations are mainly based on exponential relations between erosivity and rainfall, while the machine learning methods employed in this paper are feed-forward neural networks with Bayesian regularization and ridge regression with nonlinear transformation. The data came from 81 measuring stations of the Ministry of the Environment and Energy. In the employed algorithms, the output was the weekly cumulative erosivity value, which resulted from processing the data of all rain gauges and pluviographs, while the input data consisted of the weekly cumulative rainfall, the month, the co-ordinates and the elevation of the station, as well as the number of days for which the rainfall was recorded. For validation, a method of nested cross-validation was employed. The machine learning methods gave significantly better results compared to the empirical equations, thus reducing the effects of estimating R from only weekly rainfall records.
academia.edu
以上显示的是最相近的搜索结果。 查看全部搜索结果