Insulin signalling regulates remating in female Drosophila

S Wigby, C Slack, S Grönke… - … of the Royal …, 2011 - royalsocietypublishing.org
S Wigby, C Slack, S Grönke, P Martinez, FCF Calboli, T Chapman, L Partridge
Proceedings of the Royal Society B: Biological Sciences, 2011royalsocietypublishing.org
Mating rate is a major determinant of female lifespan and fitness, and is predicted to
optimize at an intermediate level, beyond which superfluous matings are costly. In female
Drosophila melanogaster, nutrition is a key regulator of mating rate but the underlying
mechanism is unknown. The evolutionarily conserved insulin/insulin-like growth factor-like
signalling (IIS) pathway is responsive to nutrition, and regulates development, metabolism,
stress resistance, fecundity and lifespan. Here we show that inhibition of IIS, by ablation of …
Mating rate is a major determinant of female lifespan and fitness, and is predicted to optimize at an intermediate level, beyond which superfluous matings are costly. In female Drosophila melanogaster, nutrition is a key regulator of mating rate but the underlying mechanism is unknown. The evolutionarily conserved insulin/insulin-like growth factor-like signalling (IIS) pathway is responsive to nutrition, and regulates development, metabolism, stress resistance, fecundity and lifespan. Here we show that inhibition of IIS, by ablation of Drosophila insulin-like peptide (DILP)-producing median neurosecretory cells, knockout of dilp2, dilp3 or dilp5 genes, expression of a dominant-negative DILP-receptor (InR) transgene or knockout of Lnk, results in reduced female remating rates. IIS-mediated regulation of female remating can occur independent of virgin receptivity, developmental defects, reduced body size or fecundity, and the receipt of the female receptivity-inhibiting male sex peptide. Our results provide a likely mechanism by which females match remating rates to the perceived nutritional environment. The findings suggest that longevity-mediating genes could often have pleiotropic effects on remating rate. However, overexpression of the IIS-regulated transcription factor dFOXO in the fat body—which extends lifespan—does not affect remating rate. Thus, long life and reduced remating are not obligatorily coupled.
royalsocietypublishing.org
以上显示的是最相近的搜索结果。 查看全部搜索结果