KL realignment for speaker diarization with multiple feature streams
D Vijayasenan, F Valente, H Bourlard - 2010 - infoscience.epfl.ch
D Vijayasenan, F Valente, H Bourlard
2010•infoscience.epfl.chThis paper aims at investigating the use of Kullback-Leibler (KL) divergence based
realignment with application to speaker diarization. The use of KL divergence based
realignment operates directly on the speaker posterior distribution estimates and is
compared with traditional realignment performed using HMM/GMM system. We hypothesize
that using posterior estimates to re-align speaker boundaries is more robust than gaussian
mixture models in case of multiple feature streams with different statistical properties …
realignment with application to speaker diarization. The use of KL divergence based
realignment operates directly on the speaker posterior distribution estimates and is
compared with traditional realignment performed using HMM/GMM system. We hypothesize
that using posterior estimates to re-align speaker boundaries is more robust than gaussian
mixture models in case of multiple feature streams with different statistical properties …
Abstract
This paper aims at investigating the use of Kullback-Leibler (KL) divergence based realignment with application to speaker diarization. The use of KL divergence based realignment operates directly on the speaker posterior distribution estimates and is compared with traditional realignment performed using HMM/GMM system. We hypothesize that using posterior estimates to re-align speaker boundaries is more robust than gaussian mixture models in case of multiple feature streams with different statistical properties. Experiments are run on the NIST RT06 data. These experiments reveal that in case of conventional MFCC features the two approaches yields the same performance while the KL based system outperforms the HMM/GMM re-alignment in case of combination of multiple feature streams (MFCC and TDOA).
infoscience.epfl.ch
以上显示的是最相近的搜索结果。 查看全部搜索结果