Low cost adsorbents obtained from ash for copper removal

M Harja, G Buema, DM Sutiman, C Munteanu… - Korean Journal of …, 2012 - Springer
Korean Journal of Chemical Engineering, 2012Springer
We investigated the utilization of ash and modified ash as a low-cost adsorbent to remove
copper ions from aqueous solutions such as wastewater. Batch experiments were
conducted to determine the factors affecting adsorption of copper. The influence of pH,
adsorbent dose, initial Cu 2+ concentration, type of adsorbent and contact time on the
adsorption capacity of Cu 2+ from aqueous solution by the batch adsorption technique using
ash and modified ash as a low-cost adsorbent were investigated. The optimum pH required …
Abstract
We investigated the utilization of ash and modified ash as a low-cost adsorbent to remove copper ions from aqueous solutions such as wastewater. Batch experiments were conducted to determine the factors affecting adsorption of copper. The influence of pH, adsorbent dose, initial Cu2+ concentration, type of adsorbent and contact time on the adsorption capacity of Cu2+ from aqueous solution by the batch adsorption technique using ash and modified ash as a low-cost adsorbent were investigated. The optimum pH required for maximum adsorption was found to be 5. The results from the sorption process showed that the maximum adsorption rate was obtained at 300 mg/L when a different dosage of fly ash was added into the solution, and it can be concluded that decreasing the initial concentration of copper ion is beneficial to the adsorption capacity of the adsorbent. With the increase of pH value, the removal rate increased. When the pH was 5, the removal rate reached the maximum of over 99%. When initial copper content was 300 mg/L and the pH value was 5, the adsorption capacity of the zeolite Z 4 sample reached 27.904 mg/g. The main removal mechanisms were assumed to be the adsorption at the surface of the fly ash together with the precipitation from the solution. The adsorption equilibrium was achieved at pH 5 between 1 and 4 hours in function of type of adsorbent. A dose of 1: 25 g/mL of adsorbent was sufficient for the optimum removal of copper ions. For all synthesized adsorbents the predominant mechanism can be described by pseudo-second order kinetics.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果