Magnaporthe oryzae nucleoside diphosphate kinase is required for metabolic homeostasis and redox‐mediated host innate immunity suppression

RO Rocha, RA Wilson - Molecular Microbiology, 2020 - Wiley Online Library
Molecular Microbiology, 2020Wiley Online Library
The fungus Magnaporthe oryzae causes blast, the most devastating disease of cultivated
rice. After penetrating the leaf cuticle, M. oryzae grows as a biotroph in intimate contact with
living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires
maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic
connections and requirements involved are largely unknown. Here, we characterized the M.
oryzae nucleoside diphosphate kinase‐encoding gene NDK1 and discovered it was …
Abstract
The fungus Magnaporthe oryzae causes blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle, M. oryzae grows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized the M. oryzae nucleoside diphosphate kinase‐encoding gene NDK1 and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst—the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri‐ to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed in M. oryzae strains lacking NDK1 through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+, accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1 hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1 invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy.
Wiley Online Library
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References