Mapping of charge distribution in organic field-effect transistors by confocal photoluminescence electromodulation microscopy
Nano letters, 2014•ACS Publications
A novel method for mapping the charge density spatial distribution in organic field-effect
transistors based on the electromodulation of the photoluminescence is demonstrated. In
field-effect transistors exciton quenching is dominated by exciton–charge carrier interaction
so that it can be used to map the charge distribution in different operating conditions. From a
quantitative analysis of the photoluminescence quenching, the thickness of the charge
carrier accumulation layer is derived. The injection of minority charge carriers in unipolar …
transistors based on the electromodulation of the photoluminescence is demonstrated. In
field-effect transistors exciton quenching is dominated by exciton–charge carrier interaction
so that it can be used to map the charge distribution in different operating conditions. From a
quantitative analysis of the photoluminescence quenching, the thickness of the charge
carrier accumulation layer is derived. The injection of minority charge carriers in unipolar …
A novel method for mapping the charge density spatial distribution in organic field-effect transistors based on the electromodulation of the photoluminescence is demonstrated. In field-effect transistors exciton quenching is dominated by exciton–charge carrier interaction so that it can be used to map the charge distribution in different operating conditions. From a quantitative analysis of the photoluminescence quenching, the thickness of the charge carrier accumulation layer is derived. The injection of minority charge carriers in unipolar conditions is unexpectedly evidenced, which is not displayed by the electrical characteristics.
ACS Publications
以上显示的是最相近的搜索结果。 查看全部搜索结果