Modelling malaria dynamics with partial immunity and protected travellers: optimal control and cost-effectiveness analysis

S Olaniyi, KO Okosun, SO Adesanya… - Journal of Biological …, 2020 - Taylor & Francis
Journal of Biological Dynamics, 2020Taylor & Francis
A mathematical model of malaria dynamics with naturally acquired transient immunity in the
presence of protected travellers is presented. The qualitative analysis carried out on the
autonomous model reveals the existence of backward bifurcation, where the locally
asymptotically stable malaria-free and malaria-present equilibria coexist as the basic
reproduction number crosses unity. The increased fraction of protected travellers is shown to
reduce the basic reproduction number significantly. Particularly, optimal control theory is …
A mathematical model of malaria dynamics with naturally acquired transient immunity in the presence of protected travellers is presented. The qualitative analysis carried out on the autonomous model reveals the existence of backward bifurcation, where the locally asymptotically stable malaria-free and malaria-present equilibria coexist as the basic reproduction number crosses unity. The increased fraction of protected travellers is shown to reduce the basic reproduction number significantly. Particularly, optimal control theory is used to analyse the non-autonomous model, which incorporates four control variables. The existence result for the optimal control quadruple, which minimizes malaria infection and costs of implementation, is explicitly proved. Effects of combining at least any three of the control variables on the malaria dynamics are illustrated. Furthermore, the cost-effectiveness analysis is carried out to reveal the most cost-effective strategy that could be implemented to prevent and control the spread of malaria with limited resources.
Taylor & Francis Online
以上显示的是最相近的搜索结果。 查看全部搜索结果