Negative refraction, gain and nonlinear effects in hyperbolic metamaterials
Optics Express, 2013•opg.optica.org
The negative refraction and evanescent-wave canalization effects supported by a layered
metamaterial structure obtained by alternating dielectric and plasmonic layers is
theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly
analyze the negative refraction operation for given available materials over a broad range of
frequencies and design parameters, and we apply it to broaden the bandwidth of negative
refraction. Our analytical model is also applied to explore the possibility of employing active …
metamaterial structure obtained by alternating dielectric and plasmonic layers is
theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly
analyze the negative refraction operation for given available materials over a broad range of
frequencies and design parameters, and we apply it to broaden the bandwidth of negative
refraction. Our analytical model is also applied to explore the possibility of employing active …
The negative refraction and evanescent-wave canalization effects supported by a layered metamaterial structure obtained by alternating dielectric and plasmonic layers is theoretically analyzed. By using a transmission-line analysis, we formulate a way to rapidly analyze the negative refraction operation for given available materials over a broad range of frequencies and design parameters, and we apply it to broaden the bandwidth of negative refraction. Our analytical model is also applied to explore the possibility of employing active layers for loss compensation. Nonlinear dielectrics can also be considered within this approach, and they are explored in order to add tunability to the optical response, realizing positive-to-zero-to-negative refraction at the same frequency, as a function of the input intensity. Our findings may lead to a better physical understanding and improvement of the performance of negative refraction and subwavelength imaging in layered metamaterials, paving the way towards the design of gain-assisted hyperlenses and tunable nonlinear imaging devices.
opg.optica.org
以上显示的是最相近的搜索结果。 查看全部搜索结果