New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections

K Zhou, Q Ni, W Chen, H Dai, Z Peng… - Applied Mathematics and …, 2021 - Springer
K Zhou, Q Ni, W Chen, H Dai, Z Peng, L Wang
Applied Mathematics and Mechanics, 2021Springer
In several previous studies, it was reported that a supported pipe with small geometric
imperfections would lose stability when the internal flow velocity became sufficiently high.
Recently, however, it has become clear that this conclusion may be at best incomplete. A
reevaluation of the problem is undertaken here by essentially considering the flow-induced
static deformation of a pipe. With the aid of the absolute nodal coordinate formulation
(ANCF) and the extended Lagrange equations for dynamical systems containing non …
Abstract
In several previous studies, it was reported that a supported pipe with small geometric imperfections would lose stability when the internal flow velocity became sufficiently high. Recently, however, it has become clear that this conclusion may be at best incomplete. A reevaluation of the problem is undertaken here by essentially considering the flow-induced static deformation of a pipe. With the aid of the absolute nodal coordinate formulation (ANCF) and the extended Lagrange equations for dynamical systems containing non-material volumes, the nonlinear governing equations of a pipe with three different geometric imperfections are introduced and formulated. Based on extensive numerical calculations, the static equilibrium configuration, the stability, and the nonlinear dynamics of the considered pipe system are determined and analyzed. The results show that for a supported pipe with the geometric imperfection of a half sinusoidal wave, the dynamical system could not lose stability even if the flow velocity reaches an extremely high value of 40. However, for a supported pipe with the geometric imperfection of one or one and a half sinusoidal waves, the first-mode buckling instability would take place at high flow velocity. Moreover, based on a further parametric analysis, the effects of the amplitude of the geometric imperfection and the aspect ratio of the pipe on the static deformation, the critical flow velocity for buckling instability, and the nonlinear responses of the supported pipes with geometric imperfections are analyzed.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果