On computing equilibrium binding constants for protein–protein association in membranes

A Majumder, S Kwon, JE Straub - Journal of Chemical Theory and …, 2022 - ACS Publications
Journal of Chemical Theory and Computation, 2022ACS Publications
Protein association in lipid membranes is fundamental to membrane protein function and of
great biomedical relevance. All-atom and coarse-grained models have been extensively
used to understand the protein–protein interactions in the membrane and to compute
equilibrium association constants. However, slow translational and rotational diffusion of
protein in membrane presents challenges to the effective sampling of conformations defining
the ensembles of free and bound states contributing to the association equilibrium and the …
Protein association in lipid membranes is fundamental to membrane protein function and of great biomedical relevance. All-atom and coarse-grained models have been extensively used to understand the protein–protein interactions in the membrane and to compute equilibrium association constants. However, slow translational and rotational diffusion of protein in membrane presents challenges to the effective sampling of conformations defining the ensembles of free and bound states contributing to the association equilibrium and the free energy of dimerization. We revisit the homodimerization equilibrium of the TM region of glycophorin A. Conformational sampling is performed using umbrella sampling along previously proposed one-dimensional collective variables and compared with sampling over a two-dimensional collective variable space using the MARTINI v2.2 force field. We demonstrate that the one-dimensional collective variables suffer from restricted sampling of the native homodimer conformations leading to a biased free energy landscape. Conversely, simulations along the two-dimensional collective variable effectively characterize the thermodynamically relevant native and non-native interactions contributing to the association equilibrium. These results demonstrate the challenges associated with accurately characterizing binding equilibria when multiple poses contribute to the bound state ensemble.
ACS Publications
以上显示的是最相近的搜索结果。 查看全部搜索结果