Predicting respiratory failure in patients with COVID-19 pneumonia: a case study from Northern Italy

D Ferrari, F Mandreoli, G Guaraldi, J Milić… - Proceedings of the …, 2020 - iris.unimore.it
D Ferrari, F Mandreoli, G Guaraldi, J Milić, P Missier
Proceedings of the First International AAI4H-Advances in Artificial …, 2020iris.unimore.it
The Covid-19 crisis caught health care services around the world by surprise, putting
unprecedented pressure on Intensive Care Units (ICU). To help clinical staff to manage the
limited ICU capacity, we have developed a Machine Learning model to estimate the
probability that a patient admitted to hospital with COVID-19 symptoms would develop
severe respiratory failure and require Intensive Care within 48 hours of admission. The
model was trained on an initial cohort of 198 patients admitted to the Infectious Disease …
The Covid-19 crisis caught health care services around the world by surprise, putting unprecedented pressure on Intensive Care Units (ICU). To help clinical staff to manage the limited ICU capacity, we have developed a Machine Learning model to estimate the probability that a patient admitted to hospital with COVID-19 symptoms would develop severe respiratory failure and require Intensive Care within 48 hours of admission. The model was trained on an initial cohort of 198 patients admitted to the Infectious Disease ward of Modena University Hospital, in Italy, at the peak of the epidemic, and subsequently refined as more patients were admitted. Using the LightGBM Decision Tree ensemble approach, we were able to achieve good accuracy (AUC = 0.84) despite a high rate of missing values. Furthermore, we have been able to provide clinicians with explanations in the form of personalised ranked lists of features for each prediction, using only 20 out of more than 90 variables, using Shapley values to describe the importance of each feature.
iris.unimore.it
以上显示的是最相近的搜索结果。 查看全部搜索结果