Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth
S Elhadj, JJ De Yoreo, JR Hoyer… - Proceedings of the …, 2006 - National Acad Sciences
Proceedings of the National Academy of Sciences, 2006•National Acad Sciences
The composition of biologic molecules isolated from biominerals suggests that control of
mineral growth is linked to biochemical features. Here, we define a systematic relationship
between the ability of biomolecules in solution to promote the growth of calcite (CaCO3) and
their net negative molecular charge and hydrophilicity. The degree of enhancement
depends on peptide composition, but not on peptide sequence. Data analysis shows that
this rate enhancement arises from an increase in the kinetic coefficient. We interpret the …
mineral growth is linked to biochemical features. Here, we define a systematic relationship
between the ability of biomolecules in solution to promote the growth of calcite (CaCO3) and
their net negative molecular charge and hydrophilicity. The degree of enhancement
depends on peptide composition, but not on peptide sequence. Data analysis shows that
this rate enhancement arises from an increase in the kinetic coefficient. We interpret the …
The composition of biologic molecules isolated from biominerals suggests that control of mineral growth is linked to biochemical features. Here, we define a systematic relationship between the ability of biomolecules in solution to promote the growth of calcite (CaCO3) and their net negative molecular charge and hydrophilicity. The degree of enhancement depends on peptide composition, but not on peptide sequence. Data analysis shows that this rate enhancement arises from an increase in the kinetic coefficient. We interpret the mechanism of growth enhancement to be a catalytic process whereby biomolecules reduce the magnitude of the diffusive barrier, Ek, by perturbations that displace water molecules. The result is a decrease in the energy barrier for attachment of solutes to the solid phase. This previously unrecognized relationship also rationalizes recently reported data showing acceleration of calcite growth rates over rates measured in the pure system by nanomolar levels of abalone nacre proteins. These findings show that the growth-modifying properties of small model peptides may be scaled up to analyze mineralization processes that are mediated by more complex proteins. We suggest that enhancement of calcite growth may now be estimated a priori from the composition of peptide sequences and the calculated values of hydrophilicity and net molecular charge. This insight may contribute to an improved understanding of diverse systems of biomineralization and design of new synthetic growth modulators.
National Acad Sciences
以上显示的是最相近的搜索结果。 查看全部搜索结果