Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry

F Sun, WB Zhang, A Mahdavi… - Proceedings of the …, 2014 - National Acad Sciences
Proceedings of the National Academy of Sciences, 2014National Acad Sciences
Protein-based hydrogels have emerged as promising alternatives to synthetic hydrogels for
biomedical applications, owing to the precise control of structure and function enabled by
protein engineering. Nevertheless, strategies for assembling 3D molecular networks that
carry the biological information encoded in full-length proteins remain underdeveloped.
Here we present a robust protein gelation strategy based on a pair of genetically encoded
reactive partners, SpyTag and SpyCatcher, that spontaneously form covalent isopeptide …
Protein-based hydrogels have emerged as promising alternatives to synthetic hydrogels for biomedical applications, owing to the precise control of structure and function enabled by protein engineering. Nevertheless, strategies for assembling 3D molecular networks that carry the biological information encoded in full-length proteins remain underdeveloped. Here we present a robust protein gelation strategy based on a pair of genetically encoded reactive partners, SpyTag and SpyCatcher, that spontaneously form covalent isopeptide linkages under physiological conditions. The resulting “network of Spies” may be designed to include cell-adhesion ligands, matrix metalloproteinase-1 cleavage sites, and full-length globular proteins [mCherry and leukemia inhibitory factor (LIF)]. The LIF network was used to encapsulate mouse embryonic stem cells; the encapsulated cells remained pluripotent in the absence of added LIF. These results illustrate a versatile strategy for the creation of information-rich biomaterials.
National Acad Sciences
以上显示的是最相近的搜索结果。 查看全部搜索结果