Synthesis of long ZnO nanorods under microwave irradiation or conventional heating
The Journal of Physical Chemistry C, 2014•ACS Publications
The present work reports the synthesis of zinc oxide (ZnO) nanostructures produced either
under microwave irradiation using low cost domestic microwave equipment or by
conventional heating, both under hydrothermal conditions. X-ray diffraction, scanning
electron microscopy, Fourier transform infrared spectroscopy, room/low temperature
photoluminescence, and Raman spectroscopy have been used to investigate the structure,
morphology, and optical properties of the produced ZnO nanorods. Identical structures with …
under microwave irradiation using low cost domestic microwave equipment or by
conventional heating, both under hydrothermal conditions. X-ray diffraction, scanning
electron microscopy, Fourier transform infrared spectroscopy, room/low temperature
photoluminescence, and Raman spectroscopy have been used to investigate the structure,
morphology, and optical properties of the produced ZnO nanorods. Identical structures with …
The present work reports the synthesis of zinc oxide (ZnO) nanostructures produced either under microwave irradiation using low cost domestic microwave equipment or by conventional heating, both under hydrothermal conditions. X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, room/low temperature photoluminescence, and Raman spectroscopy have been used to investigate the structure, morphology, and optical properties of the produced ZnO nanorods. Identical structures with aspect ratio up to 13 have been achieved for both synthesis routes displaying similar final properties. The hexagonal wurtzite structure has been identified, and a red-orange emission has been detected in the presence of UV irradiation for all the conditions studied. Thermal stability of the as-prepared nanostructures has been evaluated through thermogravimetric measurements revealing an increase of superficial defects. The as-prepared ZnO nanorods were tested as UV sensors on paper substrate, which led to fast response (30 s) and rapid recovery (100 s) times, as well as sensitivity up to 10 indicating that these materials may have a high potential in low cost, disposable UV photodetector applications.
ACS Publications
以上显示的是最相近的搜索结果。 查看全部搜索结果