Técnicas de predicción a corto plazo de la demanda de agua. Aplicación al uso agrícola

I Pulido Calvo, J Roldán Cañas, R López Luque… - Ingeniería del …, 2002 - iwaponline.com
Ingeniería del agua, 2002iwaponline.com
La demanda de agua es la magnitud de referencia en la gestión óptima de los sistemas de
distribución. En este trabajo se propone la estimación de la demanda en las próximas 24
horas en un sistema de distribución de agua para riego, y se utilizan, junto con los métodos
tradicionales de predicción de regresión múltiple y de modelos univariantes de series
temporales (ARIMA), las Redes Neuronales Computacionales (RNCs). Se dispone de los
datos de las demandas diarias de agua de las campañas de riegos 1987/88, 1988/89 y …
Abstract
La demanda de agua es la magnitud de referencia en la gestión óptima de los sistemas de distribución. En este trabajo se propone la estimación de la demanda en las próximas 24 horas en un sistema de distribución de agua para riego, y se utilizan, junto con los métodos tradicionales de predicción de regresión múltiple y de modelos univariantes de series temporales (ARIMA), las Redes Neuronales Computacionales (RNCs). Se dispone de los datos de las demandas diarias de agua de las campañas de riegos 1987/88, 1988/89 y 1990/91 de la zona regable de Fuente Palmera (Córdoba). Los modelos se establecen considerando la relación de los datos presentes y pasados de la demanda, aunque también se analiza la influencia de datos climáticos (temperatura máxima, temperatura media, temperatura mínima, precipitación, humedad relativa, horas de sol y velocidad del viento). Las mejores estimaciones se consiguen con la RNC que considera como variables de entrada las demandas y las temperaturas máximas de los dos días anteriores al de estimación.
IWA Publishing
以上显示的是最相近的搜索结果。 查看全部搜索结果