The formation mechanism of segmented ring-shaped Aβ oligomers and protofibrils

H Choi, W Lee, G Lee, DS Yoon… - ACS Chemical …, 2019 - ACS Publications
ACS Chemical Neuroscience, 2019ACS Publications
A clear understanding of amyloid formation with diverse morphologies is critical to
overcoming the fatal disease amyloidosis. Studies have revealed that monomer
concentration is a crucial factor for determining amyloid morphologies, such as protofibrils,
annular, or spherical oligomers. However, gaining a complete understanding of the
mechanism of formation of the various amyloid morphologies has been limited by the lack of
experimental devices and insufficient knowledge. In this study, we demonstrate that the …
A clear understanding of amyloid formation with diverse morphologies is critical to overcoming the fatal disease amyloidosis. Studies have revealed that monomer concentration is a crucial factor for determining amyloid morphologies, such as protofibrils, annular, or spherical oligomers. However, gaining a complete understanding of the mechanism of formation of the various amyloid morphologies has been limited by the lack of experimental devices and insufficient knowledge. In this study, we demonstrate that the monomer concentration is an essential factor in determining the morphology of beta-amyloid (Aβ) oligomers or protofibrils. By computational and experimental approaches, we investigated the strategies for structural stabilization of amyloid protein, the morphological changes, and amyloid aggregation. In particular, we found unprecedented conformations, e.g., single bent oligomers and segmented ring-shaped protofibrils, the formation of which was explained by the computational analysis. Our findings provide insight into the structural features of amyloid molecules formed at low concentrations of monomer, which will help determine the clinical targets (in therapy) to effectively inhibit amyloid formation in the early stages of the amyloid growth phase.
ACS Publications
以上显示的是最相近的搜索结果。 查看全部搜索结果