Thermal isolation of encapsulated MEMS resonators
CM Jha, MA Hopcroft, SA Chandorkar… - Journal of …, 2008 - ieeexplore.ieee.org
Journal of Microelectromechanical Systems, 2008•ieeexplore.ieee.org
This paper presents an in-chip thermal-isolation technique for a micro-ovenized
microelectromechanical-system resonator. Resonators with a microoven can be used for
high-precision feedback control of temperature to compensate for the temperature
dependence of resonator frequency over a wide temperature range. However, ovenization
requires power consumption for heating, and the thermal time constant must be minimized
for effective temperature control. This paper demonstrates an efficient local-thermal-isolation …
microelectromechanical-system resonator. Resonators with a microoven can be used for
high-precision feedback control of temperature to compensate for the temperature
dependence of resonator frequency over a wide temperature range. However, ovenization
requires power consumption for heating, and the thermal time constant must be minimized
for effective temperature control. This paper demonstrates an efficient local-thermal-isolation …
This paper presents an in-chip thermal-isolation technique for a micro-ovenized microelectromechanical-system resonator. Resonators with a microoven can be used for high-precision feedback control of temperature to compensate for the temperature dependence of resonator frequency over a wide temperature range. However, ovenization requires power consumption for heating, and the thermal time constant must be minimized for effective temperature control. This paper demonstrates an efficient local-thermal-isolation mechanism, which can reduce the power requirement to a few milliwatts and the thermal time constant to a few milliseconds. In this method, the mechanical suspension of the resonator is modified to provide thermal isolation and include an integrated resistive heater. This combination provides mechanical suspension, electrical heating, and thermal isolation in a compact structure that requires low heating power and has a small thermal time constant. A power consumption of approximately 12 mW for a 125degC temperature rise and a thermal time constant ranging from 7 to 10 ms is reported in this paper, which is orders of magnitude lower than that of commercially available ovenized quartz resonators. A CMOS-compatible wafer-scale encapsulation process is used to fabricate this device, and the thermal-isolation design is achieved without any modification to the existing resonator fabrication process.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果