Three-dimensional H-scan ultrasound imaging of early breast cancer response to neoadjuvant therapy in a murine model
Investigative radiology, 2022•journals.lww.com
Objectives Three-dimensional (3D) H-scan is a new ultrasound (US) technique that images
the relative size of acoustic scatterers. The goal of this research was to evaluate use of 3D H-
scan US imaging for monitoring early breast cancer response to neoadjuvant therapy using
a preclinical murine model of breast cancer. Materials and Methods Preclinical studies were
conducted using luciferase-positive breast cancer–bearing mice (n= 40). Anesthetized
animals underwent US imaging at baseline before administration with an apoptosis …
the relative size of acoustic scatterers. The goal of this research was to evaluate use of 3D H-
scan US imaging for monitoring early breast cancer response to neoadjuvant therapy using
a preclinical murine model of breast cancer. Materials and Methods Preclinical studies were
conducted using luciferase-positive breast cancer–bearing mice (n= 40). Anesthetized
animals underwent US imaging at baseline before administration with an apoptosis …
Abstract
Objectives
Three-dimensional (3D) H-scan is a new ultrasound (US) technique that images the relative size of acoustic scatterers. The goal of this research was to evaluate use of 3D H-scan US imaging for monitoring early breast cancer response to neoadjuvant therapy using a preclinical murine model of breast cancer.
Materials and Methods
Preclinical studies were conducted using luciferase-positive breast cancer–bearing mice (n= 40). Anesthetized animals underwent US imaging at baseline before administration with an apoptosis-inducing drug or a saline control. Image data were acquired using a US scanner equipped with a volumetric transducer following either a shorter-or longer-term protocol. The later included bioluminescent imaging to quantify tumor cell viability. At termination, tumors were excised for ex vivo analysis.
Results
In vivo results showed that 3D H-scan US imaging is considerably more sensitive to tumor changes after apoptosis-inducing drug therapy as compared with traditional B-scan US. Although there was no difference at baseline (P> 0.99), H-scan US results from treated tumors exhibited progressive decreases in image intensity (up to 62.2% by day 3) that had a significant linear correlation with cancer cell nuclear size (R 2> 0.51, P< 0.001). Results were validated by histological data and a secondary longitudinal study with survival as the primary end point.
Discussion
Experimental results demonstrate that noninvasive 3D H-scan US imaging can detect an early breast tumor response to apoptosis-inducing drug therapy. Local in vivo H-scan US image intensity correlated with cancer cell nuclear size, which is one of the first observable changes of a cancer cell undergoing apoptosis and confirmed using histological techniques. Early imaging results seem to provide prognostic insight on longer-term tumor response. Overall, 3D H-scan US imaging is a promising technique that visualizes the entire tumor and detects breast cancer response at an early stage of therapy.
Lippincott Williams & Wilkins
以上显示的是最相近的搜索结果。 查看全部搜索结果