Unidirectional rotating molecular motors dynamically interact with adsorbed proteins to direct the fate of mesenchymal stem cells
Science advances, 2020•science.org
Artificial rotary molecular motors convert energy into controlled motion and drive a system
out of equilibrium with molecular precision. The molecular motion is harnessed to mediate
the adsorbed protein layer and then ultimately to direct the fate of human bone marrow–
derived mesenchymal stem cells (hBM-MSCs). When influenced by the rotary motion of light-
driven molecular motors grafted on surfaces, the adsorbed protein layer primes hBM-MSCs
to differentiate into osteoblasts, while without rotation, multipotency is better maintained. We …
out of equilibrium with molecular precision. The molecular motion is harnessed to mediate
the adsorbed protein layer and then ultimately to direct the fate of human bone marrow–
derived mesenchymal stem cells (hBM-MSCs). When influenced by the rotary motion of light-
driven molecular motors grafted on surfaces, the adsorbed protein layer primes hBM-MSCs
to differentiate into osteoblasts, while without rotation, multipotency is better maintained. We …
Artificial rotary molecular motors convert energy into controlled motion and drive a system out of equilibrium with molecular precision. The molecular motion is harnessed to mediate the adsorbed protein layer and then ultimately to direct the fate of human bone marrow–derived mesenchymal stem cells (hBM-MSCs). When influenced by the rotary motion of light-driven molecular motors grafted on surfaces, the adsorbed protein layer primes hBM-MSCs to differentiate into osteoblasts, while without rotation, multipotency is better maintained. We have shown that the signaling effects of the molecular motion are mediated by the adsorbed cell-instructing protein layer, influencing the focal adhesion–cytoskeleton actin transduction pathway and regulating the protein and gene expression of hBM-MSCs. This unique molecular-based platform paves the way for implementation of dynamic interfaces for stem cell control and provides an opportunity for novel dynamic biomaterial engineering for clinical applications.
AAAS
以上显示的是最相近的搜索结果。 查看全部搜索结果