VDAC1 is essential for neurite maintenance and the inhibition of its oligomerization protects spinal cord from demyelination and facilitates locomotor function recovery …

V Paschon, BC Morena, FF Correia, GR Beltrame… - Scientific reports, 2019 - nature.com
V Paschon, BC Morena, FF Correia, GR Beltrame, GB Dos Santos, AF Cristante, AH Kihara
Scientific reports, 2019nature.com
During the progression of the neurodegenerative process, mitochondria participates in
several intercellular signaling pathways. Voltage-dependent anion-selective channel 1
(VDAC1) is a mitochondrial porin involved in the cellular metabolism and apoptosis intrinsic
pathway in many neuropathological processes. In spinal cord injury (SCI), after the primary
cell death, a secondary response that comprises the release of pro-inflammatory molecules
triggers apoptosis, inflammation, and demyelination, often leading to the loss of motor …
Abstract
During the progression of the neurodegenerative process, mitochondria participates in several intercellular signaling pathways. Voltage-dependent anion-selective channel 1 (VDAC1) is a mitochondrial porin involved in the cellular metabolism and apoptosis intrinsic pathway in many neuropathological processes. In spinal cord injury (SCI), after the primary cell death, a secondary response that comprises the release of pro-inflammatory molecules triggers apoptosis, inflammation, and demyelination, often leading to the loss of motor functions. Here, we investigated the functional role of VDAC1 in the neurodegeneration triggered by SCI. We first determined that in vitro targeted ablation of VDAC1 by specific morpholino antisense nucleotides (MOs) clearly promotes neurite retraction, whereas a pharmacological blocker of VDAC1 oligomerization (4, 4′-diisothiocyanatostilbene-2, 2′-disulfonic acid, DIDS), does not cause this effect. We next determined that, after SCI, VDAC1 undergoes conformational changes, including oligomerization and N-terminal exposition, which are important steps in the triggering of apoptotic signaling. Considering this, we investigated the effects of DIDS in vivo application after SCI. Interestingly, blockade of VDAC1 oligomerization decreases the number of apoptotic cells without interfering in the neuroinflammatory response. DIDS attenuates the massive oligodendrocyte cell death, subserving undisputable motor function recovery. Taken together, our results suggest that the prevention of VDAC1 oligomerization might be beneficial for the clinical treatment of SCI.
nature.com
以上显示的是最相近的搜索结果。 查看全部搜索结果