Water expansion dynamics after pulsed IR laser heating

J Hobley, Y Kuge, S Gorelik, M Kasuya… - Physical Chemistry …, 2008 - pubs.rsc.org
J Hobley, Y Kuge, S Gorelik, M Kasuya, K Hatanaka, S Kajimoto, H Fukumura
Physical Chemistry Chemical Physics, 2008pubs.rsc.org
A nanosecond pulsed IR (1.9 μm) laser rapidly heated water, in an open vessel, to
temperatures well below the boiling point. The subsequent dynamics of volume expansion
were monitored using time-resolved interferometry in order to measure the increase in the
water level in the heated area. The water expanded at less than the speed of sound, taking
just less than 100 ns to increase its height by∼ 500 nm at surface temperature jumps of 20
K. The initial expansion was followed by an apparent contraction and then a re-expansion …
A nanosecond pulsed IR (1.9 μm) laser rapidly heated water, in an open vessel, to temperatures well below the boiling point. The subsequent dynamics of volume expansion were monitored using time-resolved interferometry in order to measure the increase in the water level in the heated area. The water expanded at less than the speed of sound, taking just less than 100 ns to increase its height by ∼500 nm at surface temperature jumps of 20 K. The initial expansion was followed by an apparent contraction and then a re-expansion. The first expansion phase occurred more slowly than the timescale for bulk H-bond re-structuring of the water, as determined from vibrational bands in the Raman spectra, and represents the limit to the rate at which the overpressure caused by sudden heating can be released. The second phase of the expansion was caused by hydrodynamic effects and is accompanied by morphological changes resulting in light scattering as well as droplet spallation.
The Royal Society of Chemistry
以上显示的是最相近的搜索结果。 查看全部搜索结果