Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review

M Khodatars, A Shoeibi, D Sadeghi… - Computers in biology …, 2021 - Elsevier
Abstract Accurate diagnosis of Autism Spectrum Disorder (ASD) followed by effective
rehabilitation is essential for the management of this disorder. Artificial intelligence (AI) …

Automatic autism spectrum disorder detection using artificial intelligence methods with MRI neuroimaging: A review

P Moridian, N Ghassemi, M Jafari… - Frontiers in Molecular …, 2022 - frontiersin.org
Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and
symptoms that appear in early childhood. ASD is also associated with communication …

MVS-GCN: A prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis

G Wen, P Cao, H Bao, W Yang, T Zheng… - Computers in biology and …, 2022 - Elsevier
Purpose Recently, functional brain networks (FBN) have been used for the classification of
neurological disorders, such as Autism Spectrum Disorders (ASD). Neurological disorder …

Hi-GCN: A hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction

H Jiang, P Cao, MY Xu, J Yang, O Zaiane - Computers in Biology and …, 2020 - Elsevier
Purpose Recently, brain connectivity networks have been used for the classification of
neurological disorder, such as Autism Spectrum Disorders (ASD) or Alzheimer's disease …

Eye tracking-based diagnosis and early detection of autism spectrum disorder using machine learning and deep learning techniques

IA Ahmed, EM Senan, TH Rassem, MAH Ali… - Electronics, 2022 - mdpi.com
Eye tracking is a useful technique for detecting autism spectrum disorder (ASD). One of the
most important aspects of good learning is the ability to have atypical visual attention. The …

rs-fMRI and machine learning for ASD diagnosis: a systematic review and meta-analysis

CP Santana, EA de Carvalho, ID Rodrigues… - Scientific reports, 2022 - nature.com
Abstract Autism Spectrum Disorder (ASD) diagnosis is still based on behavioral criteria
through a lengthy and time-consuming process. Much effort is being made to identify brain …

A survey on deep learning for neuroimaging-based brain disorder analysis

L Zhang, M Wang, M Liu, D Zhang - Frontiers in neuroscience, 2020 - frontiersin.org
Deep learning has recently been used for the analysis of neuroimages, such as structural
magnetic resonance imaging (MRI), functional MRI, and positron emission tomography …

A comprehensive report on machine learning-based early detection of alzheimer's disease using multi-modal neuroimaging data

S Sharma, PK Mandal - ACM Computing Surveys (CSUR), 2022 - dl.acm.org
Alzheimer's Disease (AD) is a devastating neurodegenerative brain disorder with no cure.
An early identification helps patients with AD sustain a normal living. We have outlined …

Machine learning roadmap for perovskite photovoltaics

M Srivastava, JM Howard, T Gong… - The Journal of …, 2021 - ACS Publications
Perovskite solar cells (PSC) are a favorable candidate for next-generation solar systems
with efficiencies comparable to Si photovoltaics, but their long-term stability must be proven …

Deep learning for brain disorder diagnosis based on fMRI images

W Yin, L Li, FX Wu - Neurocomputing, 2022 - Elsevier
In modern neuroscience and clinical study, neuroscientists and clinicians often use non-
invasive imaging techniques to validate theories and computational models, observe brain …