Machine learning for high-entropy alloys: Progress, challenges and opportunities

X Liu, J Zhang, Z Pei - Progress in Materials Science, 2023 - Elsevier
High-entropy alloys (HEAs) have attracted extensive interest due to their exceptional
mechanical properties and the vast compositional space for new HEAs. However …

Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics

K Hippalgaonkar, Q Li, X Wang, JW Fisher III… - Nature Reviews …, 2023 - nature.com
As materials researchers increasingly embrace machine-learning (ML) methods, it is natural
to wonder what lessons can be learned from other fields undergoing similar developments …

DeePMD-kit v2: A software package for deep potential models

J Zeng, D Zhang, D Lu, P Mo, Z Li, Y Chen… - The Journal of …, 2023 - pubs.aip.org
DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics
simulations using machine learning potentials known as Deep Potential (DP) models. This …

Physics-inspired structural representations for molecules and materials

F Musil, A Grisafi, AP Bartók, C Ortner… - Chemical …, 2021 - ACS Publications
The first step in the construction of a regression model or a data-driven analysis, aiming to
predict or elucidate the relationship between the atomic-scale structure of matter and its …

Exceptional piezoelectricity, high thermal conductivity and stiffness and promising photocatalysis in two-dimensional MoSi2N4 family confirmed by first-principles

B Mortazavi, B Javvaji, F Shojaei, T Rabczuk… - Nano Energy, 2021 - Elsevier
Chemical vapor deposition has been most recently employed to fabricate centimeter-scale
high-quality single-layer MoSi 2 N 4 (Science; 2020; 369; 670). Motivated by this exciting …

First‐principles multiscale modeling of mechanical properties in graphene/borophene heterostructures empowered by machine‐learning interatomic potentials

B Mortazavi, M Silani, EV Podryabinkin… - Advanced …, 2021 - Wiley Online Library
Density functional theory calculations are robust tools to explore the mechanical properties
of pristine structures at their ground state but become exceedingly expensive for large …

GPUMD: A package for constructing accurate machine-learned potentials and performing highly efficient atomistic simulations

Z Fan, Y Wang, P Ying, K Song, J Wang… - The Journal of …, 2022 - pubs.aip.org
We present our latest advancements of machine-learned potentials (MLPs) based on the
neuroevolution potential (NEP) framework introduced in Fan et al.[Phys. Rev. B 104, 104309 …

Neuroevolution machine learning potentials: Combining high accuracy and low cost in atomistic simulations and application to heat transport

Z Fan, Z Zeng, C Zhang, Y Wang, K Song, H Dong… - Physical Review B, 2021 - APS
We develop a neuroevolution-potential (NEP) framework for generating neural network-
based machine-learning potentials. They are trained using an evolutionary strategy for …

Extending machine learning beyond interatomic potentials for predicting molecular properties

N Fedik, R Zubatyuk, M Kulichenko, N Lubbers… - Nature Reviews …, 2022 - nature.com
Abstract Machine learning (ML) is becoming a method of choice for modelling complex
chemical processes and materials. ML provides a surrogate model trained on a reference …

Multi-label active learning-based machine learning model for heart disease prediction

IM El-Hasnony, OM Elzeki, A Alshehri, H Salem - Sensors, 2022 - mdpi.com
The rapid growth and adaptation of medical information to identify significant health trends
and help with timely preventive care have been recent hallmarks of the modern healthcare …