Silting reduction and Calabi–Yau reduction of triangulated categories

O Iyama, D Yang - Transactions of the American Mathematical Society, 2018 - ams.org
We study two kinds of reduction processes of triangulated categories, that is, silting
reduction and Calabi–Yau reduction. It is shown that the silting reduction $\mathcal …

Quotients of triangulated categories and equivalences of Buchweitz, Orlov, and Amiot-Guo-Keller

O Iyama, D Yang - American Journal of Mathematics, 2020 - muse.jhu.edu
We give a simple sufficient condition for a Verdier quotient ${\cal T}/\{\cal S} $ of a
triangulated category ${\cal T} $ by a thick subcategory ${\cal S} $ to be realized inside of …

Simple-minded systems and reduction for negative Calabi-Yau triangulated categories

R Coelho Simões, D Pauksztello - Transactions of the American …, 2020 - ams.org
We develop the basic properties of $ w $-simple-minded systems in $(-w) $-Calabi-Yau
triangulated categories for $ w\geqslant 1$. We show that the theory of simple-minded …

Recollements associated to cotorsion pairs over upper triangular matrix rings

R Zhu, Y Peng, N Ding - arXiv preprint arXiv:1911.02478, 2019 - arxiv.org
Let $ A $, $ B $ be two rings and $ T=\left (\begin {smallmatrix} A & M 0 & B\end
{smallmatrix}\right) $ with $ M $ an $ A $-$ B $-bimodule. Given two complete hereditary …

Extriangulated ideal quotients and Gabriel-Zisman localizations

Y Liu, P Zhou - arXiv preprint arXiv:2208.04536, 2022 - arxiv.org
Let $(\mathcal B,\mathbb {E},\mathfrak {s}) $ be an extriangulated category with enough
projectives and enough injectives, and $\mathcal S $ be an extension closed subcategory of …

Homotopy theory in additive categories with suspensions

ZW Li - Communications in Algebra, 2021 - Taylor & Francis
We develop a homotopy theory in additive categories endowed with additive endofunctors,
analogous to Quillen's model categories theory. As applications, we show that Iyama …

[HTML][HTML] An Auslander–Buchweitz approximation approach to (pre) silting subcategories in triangulated categories

Z Di, Z Liu, J Wang, J Wei - Journal of Algebra, 2019 - Elsevier
Abstract We apply the Auslander–Buchweitz approximation triangles to study (pre) silting
subcategories in a triangulated catego-ry T. An Auslander–Reiten type correspondence …

G-dimensions for DG-modules over commutative DG-rings

J Hu, X Yang, R Zhu - arXiv preprint arXiv:2304.00527, 2023 - arxiv.org
We define and study a notion of G-dimension for DG-modules over a non-positively graded
commutative noetherian DG-ring $ A $. Some criteria for the finiteness of the G-dimension of …

The realization of Verdier quotients as triangulated subfactors

ZW Li - arXiv preprint arXiv:1612.08340, 2016 - arxiv.org
arXiv:1612.08340v5 [math.RT] 15 Sep 2017 Page 1 arXiv:1612.08340v5 [math.RT] 15 Sep
2017 THE REALIZATION OF VERDIER QUOTIENTS AS TRIANGULATED SUBFACTOR …

Buchweitz's equivalences for Gorenstein flat modules with respect to semidualizing modules

J Hu, Y Geng, J Wu, H Li - Journal of Algebra and Its Applications, 2021 - World Scientific
Let R be a commutative Noetherian ring and C a semidualizing R-module. We obtain an
exact structure (ℋ C, 𝜀) and prove that the full subcategory ℋ C∩ 𝒢 ℱ C of ℋ C is a …