Deep-learning seismology
SM Mousavi, GC Beroza - Science, 2022 - science.org
Seismic waves from earthquakes and other sources are used to infer the structure and
properties of Earth's interior. The availability of large-scale seismic datasets and the …
properties of Earth's interior. The availability of large-scale seismic datasets and the …
On scientific understanding with artificial intelligence
An oracle that correctly predicts the outcome of every particle physics experiment, the
products of every possible chemical reaction or the function of every protein would …
products of every possible chemical reaction or the function of every protein would …
Recent advances in decision trees: An updated survey
VG Costa, CE Pedreira - Artificial Intelligence Review, 2023 - Springer
Abstract Decision Trees (DTs) are predictive models in supervised learning, known not only
for their unquestionable utility in a wide range of applications but also for their interpretability …
for their unquestionable utility in a wide range of applications but also for their interpretability …
From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai
The rising popularity of explainable artificial intelligence (XAI) to understand high-performing
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
black boxes raised the question of how to evaluate explanations of machine learning (ML) …
Social physics
Recent decades have seen a rise in the use of physics methods to study different societal
phenomena. This development has been due to physicists venturing outside of their …
phenomena. This development has been due to physicists venturing outside of their …
[HTML][HTML] Addressing bias in big data and AI for health care: A call for open science
Artificial intelligence (AI) has an astonishing potential in assisting clinical decision making
and revolutionizing the field of health care. A major open challenge that AI will need to …
and revolutionizing the field of health care. A major open challenge that AI will need to …
[HTML][HTML] Notions of explainability and evaluation approaches for explainable artificial intelligence
Abstract Explainable Artificial Intelligence (XAI) has experienced a significant growth over
the last few years. This is due to the widespread application of machine learning, particularly …
the last few years. This is due to the widespread application of machine learning, particularly …
[HTML][HTML] A novel approach to explain the black-box nature of machine learning in compressive strength predictions of concrete using Shapley additive explanations …
Abstract Machine learning (ML) techniques are often employed for the accurate prediction of
the compressive strength of concrete. Despite higher accuracy, previous ML models failed to …
the compressive strength of concrete. Despite higher accuracy, previous ML models failed to …
Developing future human-centered smart cities: Critical analysis of smart city security, Data management, and Ethical challenges
As the globally increasing population drives rapid urbanization in various parts of the world,
there is a great need to deliberate on the future of the cities worth living. In particular, as …
there is a great need to deliberate on the future of the cities worth living. In particular, as …
[HTML][HTML] The future of sensitivity analysis: an essential discipline for systems modeling and policy support
Sensitivity analysis (SA) is en route to becoming an integral part of mathematical modeling.
The tremendous potential benefits of SA are, however, yet to be fully realized, both for …
The tremendous potential benefits of SA are, however, yet to be fully realized, both for …