Dissociating language and thought in large language models

K Mahowald, AA Ivanova, IA Blank, N Kanwisher… - Trends in Cognitive …, 2024 - cell.com
Large language models (LLMs) have come closest among all models to date to mastering
human language, yet opinions about their linguistic and cognitive capabilities remain split …

Flexible brain–computer interfaces

X Tang, H Shen, S Zhao, N Li, J Liu - Nature Electronics, 2023 - nature.com
Brain–computer interfaces—which allow direct communication between the brain and
external computers—have potential applications in neuroscience, medicine and virtual …

High-resolution image reconstruction with latent diffusion models from human brain activity

Y Takagi, S Nishimoto - … of the IEEE/CVF Conference on …, 2023 - openaccess.thecvf.com
Reconstructing visual experiences from human brain activity offers a unique way to
understand how the brain represents the world, and to interpret the connection between …

Deep model reassembly

X Yang, D Zhou, S Liu, J Ye… - Advances in neural …, 2022 - proceedings.neurips.cc
In this paper, we explore a novel knowledge-transfer task, termed as Deep Model
Reassembly (DeRy), for general-purpose model reuse. Given a collection of heterogeneous …

A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence

EJ Allen, G St-Yves, Y Wu, JL Breedlove… - Nature …, 2022 - nature.com
Extensive sampling of neural activity during rich cognitive phenomena is critical for robust
understanding of brain function. Here we present the Natural Scenes Dataset (NSD), in …

Language models show human-like content effects on reasoning

I Dasgupta, AK Lampinen, SCY Chan… - arXiv preprint arXiv …, 2022 - arxiv.org
Abstract reasoning is a key ability for an intelligent system. Large language models (LMs)
achieve above-chance performance on abstract reasoning tasks, but exhibit many …

Brains and algorithms partially converge in natural language processing

C Caucheteux, JR King - Communications biology, 2022 - nature.com
Deep learning algorithms trained to predict masked words from large amount of text have
recently been shown to generate activations similar to those of the human brain. However …

[HTML][HTML] Using artificial neural networks to ask 'why'questions of minds and brains

N Kanwisher, M Khosla, K Dobs - Trends in Neurosciences, 2023 - cell.com
Neuroscientists have long characterized the properties and functions of the nervous system,
and are increasingly succeeding in answering how brains perform the tasks they do. But the …

Backpropagation and the brain

TP Lillicrap, A Santoro, L Marris, CJ Akerman… - Nature Reviews …, 2020 - nature.com
During learning, the brain modifies synapses to improve behaviour. In the cortex, synapses
are embedded within multilayered networks, making it difficult to determine the effect of an …

Partial success in closing the gap between human and machine vision

R Geirhos, K Narayanappa, B Mitzkus… - Advances in …, 2021 - proceedings.neurips.cc
A few years ago, the first CNN surpassed human performance on ImageNet. However, it
soon became clear that machines lack robustness on more challenging test cases, a major …