Machine learning for a sustainable energy future
Transitioning from fossil fuels to renewable energy sources is a critical global challenge; it
demands advances—at the materials, devices and systems levels—for the efficient …
demands advances—at the materials, devices and systems levels—for the efficient …
Rare-earth doping in nanostructured inorganic materials
Impurity doping is a promising method to impart new properties to various materials. Due to
their unique optical, magnetic, and electrical properties, rare-earth ions have been …
their unique optical, magnetic, and electrical properties, rare-earth ions have been …
Recent advances and applications of deep learning methods in materials science
Deep learning (DL) is one of the fastest-growing topics in materials data science, with
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
rapidly emerging applications spanning atomistic, image-based, spectral, and textual data …
Gaussian process regression for materials and molecules
VL Deringer, AP Bartók, N Bernstein… - Chemical …, 2021 - ACS Publications
We provide an introduction to Gaussian process regression (GPR) machine-learning
methods in computational materials science and chemistry. The focus of the present review …
methods in computational materials science and chemistry. The focus of the present review …
Machine learning for alloys
Alloy modelling has a history of machine-learning-like approaches, preceding the tide of
data-science-inspired work. The dawn of computational databases has made the integration …
data-science-inspired work. The dawn of computational databases has made the integration …
Machine learning for high-entropy alloys: Progress, challenges and opportunities
High-entropy alloys (HEAs) have attracted extensive interest due to their exceptional
mechanical properties and the vast compositional space for new HEAs. However …
mechanical properties and the vast compositional space for new HEAs. However …
Accelerating materials discovery using artificial intelligence, high performance computing and robotics
New tools enable new ways of working, and materials science is no exception. In materials
discovery, traditional manual, serial, and human-intensive work is being augmented by …
discovery, traditional manual, serial, and human-intensive work is being augmented by …
Polarons in materials
Polarons are quasiparticles that easily form in polarizable materials due to the coupling of
excess electrons or holes with ionic vibrations. These quasiparticles manifest themselves in …
excess electrons or holes with ionic vibrations. These quasiparticles manifest themselves in …
Machine learning in concrete science: applications, challenges, and best practices
Concrete, as the most widely used construction material, is inextricably connected with
human development. Despite conceptual and methodological progress in concrete science …
human development. Despite conceptual and methodological progress in concrete science …
Mechanical behavior of high-entropy alloys
Research in the field of high-entropy alloys has been surging since the 2010s. As widely
acknowledged, research interests in this field are largely sparked by the enormous …
acknowledged, research interests in this field are largely sparked by the enormous …