Nonparametric Estimation of Non-Crossing Quantile Regression Process with Deep ReQU Neural Networks

G Shen, Y Jiao, Y Lin, JL Horowitz, J Huang - Journal of Machine Learning …, 2024 - jmlr.org
We propose a penalized nonparametric approach to estimating the quantile regression
process (QRP) in a nonseparable model using rectifier quadratic unit (ReQU) activated deep …

Conformal thresholded intervals for efficient regression

R Luo, Z Zhou - arXiv preprint arXiv:2407.14495, 2024 - arxiv.org
This paper introduces Conformal Thresholded Intervals (CTI), a novel conformal regression
method that aims to produce the smallest possible prediction set with guaranteed coverage …

Estimation of non-crossing quantile regression process with deep REQU neural networks

G Shen, Y Jiao, Y Lin, JL Horowitz, J Huang - arXiv preprint arXiv …, 2022 - arxiv.org
We propose a penalized nonparametric approach to estimating the quantile regression
process (QRP) in a nonseparable model using rectifier quadratic unit (ReQU) activated deep …

[PDF][PDF] Using quantile regression in neural networks for contention prediction in multicore processors

A Brando, I Serra, E Mezzetti, J Abella… - … Conference on Real …, 2022 - drops.dagstuhl.de
The development of multicore-based embedded real-time systems is a complex process that
encompasses several phases. During the software design and development phases (DDP) …

Censored quantile regression neural networks for distribution-free survival analysis

T Pearce, JH Jeong, J Zhu - Advances in Neural …, 2022 - proceedings.neurips.cc
This paper considers doing quantile regression on censored data using neural networks
(NNs). This adds to the survival analysis toolkit by allowing direct prediction of the target …

Retrospective uncertainties for deep models using vine copulas

N Tagasovska, F Ozdemir… - … Conference on Artificial …, 2023 - proceedings.mlr.press
Despite the major progress of deep models as learning machines, uncertainty estimation
remains a major challenge. Existing solutions rely on modified loss functions or architectural …

Nonparametric quantile regression: Non-crossing constraints and conformal prediction

W Tang, G Shen, Y Lin, J Huang - arXiv preprint arXiv:2210.10161, 2022 - arxiv.org
We propose a nonparametric quantile regression method using deep neural networks with a
rectified linear unit penalty function to avoid quantile crossing. This penalty function is …

Adaptive Conformal Prediction Intervals Using Data-Dependent Weights with Application to Seismic Response Prediction

P Hajibabaee, F Pourkamali-Anaraki… - IEEE …, 2024 - ieeexplore.ieee.org
Machine learning often lacks transparent performance indicators, especially in generating
point predictions. This paper addresses this limitation through conformal prediction, a non …

Risk-Conditioned Reinforcement Learning: A Generalized Approach for Adapting to Varying Risk Measures

G Yoo, J Park, H Woo - Proceedings of the AAAI Conference on …, 2024 - ojs.aaai.org
In application domains requiring mission-critical decision making, such as finance and
robotics, the optimal policy derived by reinforcement learning (RL) often hinges on a …

Fast nonlinear vector quantile regression

AA Rosenberg, S Vedula, Y Romano… - arXiv preprint arXiv …, 2022 - arxiv.org
Quantile regression (QR) is a powerful tool for estimating one or more conditional quantiles
of a target variable $\mathrm {Y} $ given explanatory features $\boldsymbol {\mathrm {X}} …