Long-range one-dimensional internal diffusion-limited aggregation
C da Costa, D Thacker, A Wade - arXiv preprint arXiv:2411.10113, 2024 - arxiv.org
We study internal diffusion limited aggregation on $\mathbb {Z} $, where a cluster is grown
by sequentially adding the first site outside the cluster visited by each random walk …
by sequentially adding the first site outside the cluster visited by each random walk …
Directed diffusion-limited aggregation
S Martineau - arXiv preprint arXiv:1411.3667, 2014 - arxiv.org
In this paper, we define a directed version of the Diffusion-Limited-Aggregation model. We
present several equivalent definitions in finite volume and a definition in infinite volume. We …
present several equivalent definitions in finite volume and a definition in infinite volume. We …
One-dimensional long-range diffusion-limited aggregation I
G Amir, O Angel, I Benjamini, G Kozma - The Annals of Probability, 2016 - projecteuclid.org
We examine diffusion-limited aggregation generated by a random walk on $\mathbb {Z} $
with long jumps. We derive upper and lower bounds on the growth rate of the aggregate as …
with long jumps. We derive upper and lower bounds on the growth rate of the aggregate as …
From fractals in external DLA to internal DLA on fractals
E Sava-Huss - Fractal Geometry and Stochastics VI, 2021 - Springer
We present an unified approach on the behavior of two random growth models (external
DLA and internal DLA) on infinite graphs, the second one being an internal counterpart of …
DLA and internal DLA) on infinite graphs, the second one being an internal counterpart of …
On diffusion limited deposition
A Asselah, ENM Cirillo, B Scoppola, E Scoppola - 2016 - projecteuclid.org
We propose a simple model of columnar growth through diffusion limited aggregation (DLA).
Consider a graph G_N*N, where the basis has N vertices G_N:={1,\dots,N\}, and two vertices …
Consider a graph G_N*N, where the basis has N vertices G_N:={1,\dots,N\}, and two vertices …
Fractional Edgeworth expansions for one-dimensional heavy-tailed random variables and applications
In this article, we study a class of lattice random variables in the domain of attraction of an α-
stable random variable with index α∈(0, 2) which satisfy a truncated fractional Edgeworth …
stable random variable with index α∈(0, 2) which satisfy a truncated fractional Edgeworth …
One-dimensional long-range diffusion-limited aggregation III--The limit aggregate
G Amir - arXiv preprint arXiv:0911.0122, 2009 - arxiv.org
In this paper we study the structure of the limit aggregate $ A_\infty=\bigcup_ {n\geq 0} A_n $
of the one-dimensional long range diffusion limited aggregation process defined in …
of the one-dimensional long range diffusion limited aggregation process defined in …
One-dimensional long-range diffusion-limited aggregation III–The limit aggregate
G Amir - 2017 - projecteuclid.org
In this paper we study the structure of the limit aggregate A_∞=n\geq0A_n of the one-
dimensional long range diffusion limited aggregation process defined in (Ann. Probab. 44 …
dimensional long range diffusion limited aggregation process defined in (Ann. Probab. 44 …
[图书][B] Fractal Geometry and Stochastics VI
U Freiberg, B Hambly, M Hinz, S Winter - 2021 - Springer
The conference 'Fractal Geometry and Stochastics VI'with 122 participants from 20 different
countries took place in Bad Herrenalb, Baden-Württemberg, Germany, from September 30 to …
countries took place in Bad Herrenalb, Baden-Württemberg, Germany, from September 30 to …
Percolation sur les groupes et modèles dirigés
S Martineau - 2014 - theses.hal.science
Cette thèse porte sur deux types de problèmes de mécanique statistique: il y est question de
percolation sur les groupes et de modèles dirigés. Dans le premier cas, il s' agit de réaliser …
percolation sur les groupes et de modèles dirigés. Dans le premier cas, il s' agit de réaliser …