Diffusion Models for Image Restoration and Enhancement--A Comprehensive Survey

X Li, Y Ren, X Jin, C Lan, X Wang, W Zeng… - arXiv preprint arXiv …, 2023 - arxiv.org
Image restoration (IR) has been an indispensable and challenging task in the low-level
vision field, which strives to improve the subjective quality of images distorted by various …

Sequential modeling enables scalable learning for large vision models

Y Bai, X Geng, K Mangalam, A Bar… - Proceedings of the …, 2024 - openaccess.thecvf.com
We introduce a novel sequential modeling approach which enables learning a Large Vision
Model (LVM) without making use of any linguistic data. To do this we define a common …

Images speak in images: A generalist painter for in-context visual learning

X Wang, W Wang, Y Cao, C Shen… - Proceedings of the …, 2023 - openaccess.thecvf.com
In-context learning, as a new paradigm in NLP, allows the model to rapidly adapt to various
tasks with only a handful of prompts and examples. But in computer vision, the difficulties for …

Learning a sparse transformer network for effective image deraining

X Chen, H Li, M Li, J Pan - … of the IEEE/CVF Conference on …, 2023 - openaccess.thecvf.com
Transformers-based methods have achieved significant performance in image deraining as
they can model the non-local information which is vital for high-quality image reconstruction …

Survey on rain removal from videos or a single image

H Wang, Y Wu, M Li, Q Zhao, D Meng - Science China Information …, 2022 - Springer
Rain can cause performance degradation of outdoor computer vision tasks. Thus, the
exploration of rain removal from videos or a single image has drawn considerable attention …

Maxim: Multi-axis mlp for image processing

Z Tu, H Talebi, H Zhang, F Yang… - Proceedings of the …, 2022 - openaccess.thecvf.com
Recent progress on Transformers and multi-layer perceptron (MLP) models provide new
network architectural designs for computer vision tasks. Although these models proved to be …

Restormer: Efficient transformer for high-resolution image restoration

SW Zamir, A Arora, S Khan, M Hayat… - Proceedings of the …, 2022 - openaccess.thecvf.com
Since convolutional neural networks (CNNs) perform well at learning generalizable image
priors from large-scale data, these models have been extensively applied to image …

Deep generalized unfolding networks for image restoration

C Mou, Q Wang, J Zhang - … of the IEEE/CVF conference on …, 2022 - openaccess.thecvf.com
Deep neural networks (DNN) have achieved great success in image restoration. However,
most DNN methods are designed as a black box, lacking transparency and interpretability …

All-in-one image restoration for unknown corruption

B Li, X Liu, P Hu, Z Wu, J Lv… - Proceedings of the IEEE …, 2022 - openaccess.thecvf.com
In this paper, we study a challenging problem in image restoration, namely, how to develop
an all-in-one method that could recover images from a variety of unknown corruption types …

Fourmer: An efficient global modeling paradigm for image restoration

M Zhou, J Huang, CL Guo, C Li - … conference on machine …, 2023 - proceedings.mlr.press
Global modeling-based image restoration frameworks have become popular. However, they
often require a high memory footprint and do not consider task-specific degradation. Our …