A survey on deep learning applied to medical images: from simple artificial neural networks to generative models

P Celard, EL Iglesias, JM Sorribes-Fdez… - Neural Computing and …, 2023 - Springer
Deep learning techniques, in particular generative models, have taken on great importance
in medical image analysis. This paper surveys fundamental deep learning concepts related …

Multi-task deep learning for medical image computing and analysis: A review

Y Zhao, X Wang, T Che, G Bao, S Li - Computers in Biology and Medicine, 2023 - Elsevier
The renaissance of deep learning has provided promising solutions to various tasks. While
conventional deep learning models are constructed for a single specific task, multi-task deep …

Deep learning for neurodegenerative disorder (2016 to 2022): A systematic review

J Chaki, M Woźniak - Biomedical Signal Processing and Control, 2023 - Elsevier
A neurodegenerative disorder, such as Parkinson's, Alzheimer's, epilepsy, stroke, and
others, is a type of disease in which central nervous system cells stop working or die …

The role of generative adversarial networks in brain MRI: a scoping review

H Ali, MR Biswas, F Mohsen, U Shah, A Alamgir… - Insights into …, 2022 - Springer
The performance of artificial intelligence (AI) for brain MRI can improve if enough data are
made available. Generative adversarial networks (GANs) showed a lot of potential to …

[HTML][HTML] Applications of artificial intelligence to aid early detection of dementia: a scoping review on current capabilities and future directions

R Li, X Wang, K Lawler, S Garg, Q Bai, J Alty - Journal of biomedical …, 2022 - Elsevier
Abstract Background & Objective With populations aging, the number of people with
dementia worldwide is expected to triple to 152 million by 2050. Seventy percent of cases …

[HTML][HTML] Machine learning in clinical trials: A primer with applications to neurology

MI Miller, LC Shih, VB Kolachalama - Neurotherapeutics, 2023 - Elsevier
We reviewed foundational concepts in artificial intelligence (AI) and machine learning (ML)
and discussed ways in which these methodologies may be employed to enhance progress …

Artificial intelligence applications in psychoradiology

F Li, H Sun, BB Biswal, JA Sweeney, Q Gong - Psychoradiology, 2021 - academic.oup.com
One important challenge in psychiatric research is to translate findings from brain imaging
research studies that identified brain alterations in patient groups into an accurate diagnosis …

Artificial intelligence for cognitive health assessment: state-of-the-art, open challenges and future directions

AR Javed, A Saadia, H Mughal, TR Gadekallu… - Cognitive …, 2023 - Springer
The subjectivity and inaccuracy of in-clinic Cognitive Health Assessments (CHA) have led
many researchers to explore ways to automate the process to make it more objective and to …

Alzheimer's disease diagnosis from single and multimodal data using machine and deep learning models: Achievements and future directions

A Elazab, C Wang, M Abdelaziz, J Zhang, J Gu… - Expert Systems with …, 2024 - Elsevier
Alzheimer's Disease (AD) is the most prevalent and rapidly progressing neurodegenerative
disorder among the elderly and is a leading cause of dementia. AD results in significant …

Generative adversarial network constrained multiple loss autoencoder: A deep learning‐based individual atrophy detection for Alzheimer's disease and mild cognitive …

R Shi, C Sheng, S Jin, Q Zhang, S Zhang… - Human brain …, 2023 - Wiley Online Library
Exploring individual brain atrophy patterns is of great value in precision medicine for
Alzheimer's disease (AD) and mild cognitive impairment (MCI). However, the current …