A comprehensive survey of continual learning: theory, method and application

L Wang, X Zhang, H Su, J Zhu - IEEE Transactions on Pattern …, 2024 - ieeexplore.ieee.org
To cope with real-world dynamics, an intelligent system needs to incrementally acquire,
update, accumulate, and exploit knowledge throughout its lifetime. This ability, known as …

If deep learning is the answer, what is the question?

A Saxe, S Nelli, C Summerfield - Nature Reviews Neuroscience, 2021 - nature.com
Neuroscience research is undergoing a minor revolution. Recent advances in machine
learning and artificial intelligence research have opened up new ways of thinking about …

Three types of incremental learning

GM Van de Ven, T Tuytelaars, AS Tolias - Nature Machine Intelligence, 2022 - nature.com
Incrementally learning new information from a non-stationary stream of data, referred to as
'continual learning', is a key feature of natural intelligence, but a challenging problem for …

Revisiting class-incremental learning with pre-trained models: Generalizability and adaptivity are all you need

DW Zhou, ZW Cai, HJ Ye, DC Zhan, Z Liu - arXiv preprint arXiv …, 2023 - arxiv.org
Class-incremental learning (CIL) aims to adapt to emerging new classes without forgetting
old ones. Traditional CIL models are trained from scratch to continually acquire knowledge …

S-prompts learning with pre-trained transformers: An occam's razor for domain incremental learning

Y Wang, Z Huang, X Hong - Advances in Neural …, 2022 - proceedings.neurips.cc
State-of-the-art deep neural networks are still struggling to address the catastrophic
forgetting problem in continual learning. In this paper, we propose one simple paradigm …

Online continual learning through mutual information maximization

Y Guo, B Liu, D Zhao - International conference on machine …, 2022 - proceedings.mlr.press
This paper proposed a new online continual learning approach called OCM based on
mutual information (MI) maximization. It achieves two objectives that are critical in dealing …

Robust spike-based continual meta-learning improved by restricted minimum error entropy criterion

S Yang, J Tan, B Chen - Entropy, 2022 - mdpi.com
The spiking neural network (SNN) is regarded as a promising candidate to deal with the
great challenges presented by current machine learning techniques, including the high …

Class-incremental learning: A survey

DW Zhou, QW Wang, ZH Qi, HJ Ye… - IEEE Transactions on …, 2024 - ieeexplore.ieee.org
Deep models, eg, CNNs and Vision Transformers, have achieved impressive achievements
in many vision tasks in the closed world. However, novel classes emerge from time to time in …

A theoretical study on solving continual learning

G Kim, C Xiao, T Konishi, Z Ke… - Advances in neural …, 2022 - proceedings.neurips.cc
Continual learning (CL) learns a sequence of tasks incrementally. There are two popular CL
settings, class incremental learning (CIL) and task incremental learning (TIL). A major …

Achieving forgetting prevention and knowledge transfer in continual learning

Z Ke, B Liu, N Ma, H Xu, L Shu - Advances in Neural …, 2021 - proceedings.neurips.cc
Continual learning (CL) learns a sequence of tasks incrementally with the goal of achieving
two main objectives: overcoming catastrophic forgetting (CF) and encouraging knowledge …