[HTML][HTML] Random walks and diffusion on networks

N Masuda, MA Porter, R Lambiotte - Physics reports, 2017 - Elsevier
Random walks are ubiquitous in the sciences, and they are interesting from both theoretical
and practical perspectives. They are one of the most fundamental types of stochastic …

Graph summarization methods and applications: A survey

Y Liu, T Safavi, A Dighe, D Koutra - ACM computing surveys (CSUR), 2018 - dl.acm.org
While advances in computing resources have made processing enormous amounts of data
possible, human ability to identify patterns in such data has not scaled accordingly. Efficient …

Graph neural networks: foundation, frontiers and applications

L Wu, P Cui, J Pei, L Zhao, X Guo - … of the 28th ACM SIGKDD Conference …, 2022 - dl.acm.org
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …

Gcc: Graph contrastive coding for graph neural network pre-training

J Qiu, Q Chen, Y Dong, J Zhang, H Yang… - Proceedings of the 26th …, 2020 - dl.acm.org
Graph representation learning has emerged as a powerful technique for addressing real-
world problems. Various downstream graph learning tasks have benefited from its recent …

Combining label propagation and simple models out-performs graph neural networks

Q Huang, H He, A Singh, SN Lim… - arXiv preprint arXiv …, 2020 - arxiv.org
Graph Neural Networks (GNNs) are the predominant technique for learning over graphs.
However, there is relatively little understanding of why GNNs are successful in practice and …

Distance encoding: Design provably more powerful neural networks for graph representation learning

P Li, Y Wang, H Wang… - Advances in Neural …, 2020 - proceedings.neurips.cc
Learning representations of sets of nodes in a graph is crucial for applications ranging from
node-role discovery to link prediction and molecule classification. Graph Neural Networks …

Multi-scale attributed node embedding

B Rozemberczki, C Allen… - Journal of Complex …, 2021 - academic.oup.com
We present network embedding algorithms that capture information about a node from the
local distribution over node attributes around it, as observed over random walks following an …

How powerful are graph neural networks?

K Xu, W Hu, J Leskovec, S Jegelka - arXiv preprint arXiv:1810.00826, 2018 - arxiv.org
Graph Neural Networks (GNNs) are an effective framework for representation learning of
graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector …

Characteristic functions on graphs: Birds of a feather, from statistical descriptors to parametric models

B Rozemberczki, R Sarkar - Proceedings of the 29th ACM international …, 2020 - dl.acm.org
In this paper, we propose a flexible notion of characteristic functions defined on graph
vertices to describe the distribution of vertex features at multiple scales. We introduce …

Representation learning on graphs: Methods and applications

WL Hamilton, R Ying, J Leskovec - arXiv preprint arXiv:1709.05584, 2017 - arxiv.org
Machine learning on graphs is an important and ubiquitous task with applications ranging
from drug design to friendship recommendation in social networks. The primary challenge in …