[HTML][HTML] Random walks and diffusion on networks
Random walks are ubiquitous in the sciences, and they are interesting from both theoretical
and practical perspectives. They are one of the most fundamental types of stochastic …
and practical perspectives. They are one of the most fundamental types of stochastic …
Graph summarization methods and applications: A survey
While advances in computing resources have made processing enormous amounts of data
possible, human ability to identify patterns in such data has not scaled accordingly. Efficient …
possible, human ability to identify patterns in such data has not scaled accordingly. Efficient …
Graph neural networks: foundation, frontiers and applications
The field of graph neural networks (GNNs) has seen rapid and incredible strides over the
recent years. Graph neural networks, also known as deep learning on graphs, graph …
recent years. Graph neural networks, also known as deep learning on graphs, graph …
Gcc: Graph contrastive coding for graph neural network pre-training
Graph representation learning has emerged as a powerful technique for addressing real-
world problems. Various downstream graph learning tasks have benefited from its recent …
world problems. Various downstream graph learning tasks have benefited from its recent …
Combining label propagation and simple models out-performs graph neural networks
Graph Neural Networks (GNNs) are the predominant technique for learning over graphs.
However, there is relatively little understanding of why GNNs are successful in practice and …
However, there is relatively little understanding of why GNNs are successful in practice and …
Distance encoding: Design provably more powerful neural networks for graph representation learning
Learning representations of sets of nodes in a graph is crucial for applications ranging from
node-role discovery to link prediction and molecule classification. Graph Neural Networks …
node-role discovery to link prediction and molecule classification. Graph Neural Networks …
Multi-scale attributed node embedding
B Rozemberczki, C Allen… - Journal of Complex …, 2021 - academic.oup.com
We present network embedding algorithms that capture information about a node from the
local distribution over node attributes around it, as observed over random walks following an …
local distribution over node attributes around it, as observed over random walks following an …
How powerful are graph neural networks?
Graph Neural Networks (GNNs) are an effective framework for representation learning of
graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector …
graphs. GNNs follow a neighborhood aggregation scheme, where the representation vector …
Characteristic functions on graphs: Birds of a feather, from statistical descriptors to parametric models
B Rozemberczki, R Sarkar - Proceedings of the 29th ACM international …, 2020 - dl.acm.org
In this paper, we propose a flexible notion of characteristic functions defined on graph
vertices to describe the distribution of vertex features at multiple scales. We introduce …
vertices to describe the distribution of vertex features at multiple scales. We introduce …
Representation learning on graphs: Methods and applications
Machine learning on graphs is an important and ubiquitous task with applications ranging
from drug design to friendship recommendation in social networks. The primary challenge in …
from drug design to friendship recommendation in social networks. The primary challenge in …