Minimax approach to variable fidelity data interpolation
Engineering problems often involve data sources of variable fidelity with different costs of
obtaining an observation. In particular, one can use both a cheap low fidelity function (eg a …
obtaining an observation. In particular, one can use both a cheap low fidelity function (eg a …
Bayesian fixed-domain asymptotics for covariance parameters in a Gaussian process model
C Li - The Annals of Statistics, 2022 - projecteuclid.org
Bayesian fixed-domain asymptotics for covariance parameters in a Gaussian process model
Page 1 The Annals of Statistics 2022, Vol. 50, No. 6, 3334–3363 https://doi.org/10.1214/22-AOS2230 …
Page 1 The Annals of Statistics 2022, Vol. 50, No. 6, 3334–3363 https://doi.org/10.1214/22-AOS2230 …
Inside-out cross-covariance for spatial multivariate data
M Peruzzi - arXiv preprint arXiv:2412.12407, 2024 - arxiv.org
As the spatial features of multivariate data are increasingly central in researchers' applied
problems, there is a growing demand for novel spatially-aware methods that are flexible …
problems, there is a growing demand for novel spatially-aware methods that are flexible …
Parameter Estimation for Gaussian Random Fields and Multivariate Gaussian Random Processes Under Fixed-Domain Asymptotics
H Feng - 2024 - search.proquest.com
This dissertation explores parameter estimation for Gaussian random fields and multivariate
Gaussian random processes under fixed-domain asymptotics, a crucial framework for …
Gaussian random processes under fixed-domain asymptotics, a crucial framework for …
Minimax error of interpolation and optimal design of experiments for variable fidelity data
Engineering problems often involve data sources of variable fidelity with different costs of
obtaining an observation. In particular, one can use both a cheap low fidelity function (eg a …
obtaining an observation. In particular, one can use both a cheap low fidelity function (eg a …
Parametric Estimation in Spatial Regression Models
N Yu - 2022 - search.proquest.com
This dissertation addresses the asymptotic theory behind parametric estimation in spatial
regression models. In spatial statistics, there are two prominent types of asymptotic …
regression models. In spatial statistics, there are two prominent types of asymptotic …
[图书][B] Estimation of Bivariate Spatial Data
N Onnen - 2021 - search.proquest.com
Bivariate spatial models are used to represent the joint relationship between two processes
observed over space. By modeling two processes jointly, we may be able to enhance …
observed over space. By modeling two processes jointly, we may be able to enhance …
A Parametric Test Based on Maximum Likelihood
R Vallejos, F Osorio, M Bevilacqua, R Vallejos… - … : With Applications in R, 2020 - Springer
Assessing the significance of the correlation between the components of a bivariate random
field is of great interest in the analysis of spatial-spatial data. In this chapter, testing the …
field is of great interest in the analysis of spatial-spatial data. In this chapter, testing the …
[PDF][PDF] Ошибка интерполяции для регрессии на основе данных разной точности
А Зайцев - itas2016.iitp.ru
Аннотация Для решения задачи регрессии в случае наличия данных разной точности
часто используется кокригинг—обобщение регрессии на основе гауссовских процессов …
часто используется кокригинг—обобщение регрессии на основе гауссовских процессов …