Minimax approach to variable fidelity data interpolation

A Zaytsev, E Burnaev - Artificial Intelligence and Statistics, 2017 - proceedings.mlr.press
Engineering problems often involve data sources of variable fidelity with different costs of
obtaining an observation. In particular, one can use both a cheap low fidelity function (eg a …

Bayesian fixed-domain asymptotics for covariance parameters in a Gaussian process model

C Li - The Annals of Statistics, 2022 - projecteuclid.org
Bayesian fixed-domain asymptotics for covariance parameters in a Gaussian process model
Page 1 The Annals of Statistics 2022, Vol. 50, No. 6, 3334–3363 https://doi.org/10.1214/22-AOS2230 …

Inside-out cross-covariance for spatial multivariate data

M Peruzzi - arXiv preprint arXiv:2412.12407, 2024 - arxiv.org
As the spatial features of multivariate data are increasingly central in researchers' applied
problems, there is a growing demand for novel spatially-aware methods that are flexible …

Parameter Estimation for Gaussian Random Fields and Multivariate Gaussian Random Processes Under Fixed-Domain Asymptotics

H Feng - 2024 - search.proquest.com
This dissertation explores parameter estimation for Gaussian random fields and multivariate
Gaussian random processes under fixed-domain asymptotics, a crucial framework for …

Minimax error of interpolation and optimal design of experiments for variable fidelity data

A Zaytsev, E Burnaev - arXiv preprint arXiv:1610.06731, 2016 - arxiv.org
Engineering problems often involve data sources of variable fidelity with different costs of
obtaining an observation. In particular, one can use both a cheap low fidelity function (eg a …

Parametric Estimation in Spatial Regression Models

N Yu - 2022 - search.proquest.com
This dissertation addresses the asymptotic theory behind parametric estimation in spatial
regression models. In spatial statistics, there are two prominent types of asymptotic …

[图书][B] Estimation of Bivariate Spatial Data

N Onnen - 2021 - search.proquest.com
Bivariate spatial models are used to represent the joint relationship between two processes
observed over space. By modeling two processes jointly, we may be able to enhance …

A Parametric Test Based on Maximum Likelihood

R Vallejos, F Osorio, M Bevilacqua, R Vallejos… - … : With Applications in R, 2020 - Springer
Assessing the significance of the correlation between the components of a bivariate random
field is of great interest in the analysis of spatial-spatial data. In this chapter, testing the …

[PDF][PDF] Ошибка интерполяции для регрессии на основе данных разной точности

А Зайцев - itas2016.iitp.ru
Аннотация Для решения задачи регрессии в случае наличия данных разной точности
часто используется кокригинг—обобщение регрессии на основе гауссовских процессов …