Weakly supervised object localization and detection: A survey
As an emerging and challenging problem in the computer vision community, weakly
supervised object localization and detection plays an important role for developing new …
supervised object localization and detection plays an important role for developing new …
A survey on label-efficient deep image segmentation: Bridging the gap between weak supervision and dense prediction
The rapid development of deep learning has made a great progress in image segmentation,
one of the fundamental tasks of computer vision. However, the current segmentation …
one of the fundamental tasks of computer vision. However, the current segmentation …
Multi-class token transformer for weakly supervised semantic segmentation
This paper proposes a new transformer-based framework to learn class-specific object
localization maps as pseudo labels for weakly supervised semantic segmentation (WSSS) …
localization maps as pseudo labels for weakly supervised semantic segmentation (WSSS) …
Layercam: Exploring hierarchical class activation maps for localization
The class activation maps are generated from the final convolutional layer of CNN. They can
highlight discriminative object regions for the class of interest. These discovered object …
highlight discriminative object regions for the class of interest. These discovered object …
L2g: A simple local-to-global knowledge transfer framework for weakly supervised semantic segmentation
Mining precise class-aware attention maps, aka, class activation maps, is essential for
weakly supervised semantic segmentation. In this paper, we present L2G, a simple online …
weakly supervised semantic segmentation. In this paper, we present L2G, a simple online …
Regional semantic contrast and aggregation for weakly supervised semantic segmentation
Learning semantic segmentation from weakly-labeled (eg, image tags only) data is
challenging since it is hard to infer dense object regions from sparse semantic tags. Despite …
challenging since it is hard to infer dense object regions from sparse semantic tags. Despite …
Class re-activation maps for weakly-supervised semantic segmentation
Extracting class activation maps (CAM) is arguably the most standard step of generating
pseudo masks for weakly-supervised semantic segmentation (WSSS). Yet, we find that the …
pseudo masks for weakly-supervised semantic segmentation (WSSS). Yet, we find that the …
Semi-supervised semantic segmentation with cross-consistency training
In this paper, we present a novel cross-consistency based semi-supervised approach for
semantic segmentation. Consistency training has proven to be a powerful semi-supervised …
semantic segmentation. Consistency training has proven to be a powerful semi-supervised …
Simultaneously localize, segment and rank the camouflaged objects
Camouflage is a key defence mechanism across species that is critical to survival. Common
camouflage include background matching, imitating the color and pattern of the …
camouflage include background matching, imitating the color and pattern of the …
Anti-adversarially manipulated attributions for weakly and semi-supervised semantic segmentation
Weakly supervised semantic segmentation produces a pixel-level localization from class
labels; but a classifier trained on such labels is likely to restrict its focus to a small …
labels; but a classifier trained on such labels is likely to restrict its focus to a small …